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Neural Networks can be Used to Calculate Fast (>10 kHz) T,
Profiles from Multi-Energy SXR Measurements

* Thomson scattering provides 60 Hz T, measurements

« With proper atomic and impurity transport modeling,
multi-energy SXR data has been used to calculate high-
resolution (~10 kHz) T, between Thomson pulses

* Neural networks can calculate T, without these complex
models, and can be used for real-time T, measurements

* These neural networks have been studied with synthetic
Xx-ray data, and successfully tested with real data
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Multi-Energy SXR Arrays Use High Time Resolution Diode
Arrays with Different Filters for Coarse Spectral Resolution

« NSTX edge array used 5 diode arrays (0.3 um Ti, 5, 15, and
50 um Be, and one without a filter for bolometry)

« 20 spatial channels provided ~1 cm resolution of the plasma
edge (R=127-147 cm) with a time resolution >10 kHz

 Digitally-controlled variable gain amplifiers provided excellent
signal-to-noise for the low intensities measured in the edge
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NSTX-U Will Have a New In-vessel ME-SXR Diagnostic with
Core and Edge Subarrays

* Core ME-SXR for fast T,
Impurity transport, MHD

measurements

* Hi-res edge ME-SXR to
study edge phenomena

such as ELMs

 TGIS will have same view of
the original neutral beam
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A Transmission Grating based UV Imaging Spectrometer
Provides Constraints on Impurity Concentrations

« Radially resolved spectrometer operates in a survey mode
covering 30 to 700 A with spectral resolution SA/A ~ 3%.

« Detector time resolution is less than for ME-SXR (400 ms will
be upgraded to 10 ms for NSTX-U)
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It has Previously been Shown that Electron Temperature can
be Found Numerically from ME-SXR Measurements

« Linearization of elements contributing to x-ray emission
allows separation of T, n,, and impurity concentrations by
using the differences between filtered measurements

« SXR emissivity, E; is a function of density and impurity
response (a function of T,) weighted by concentration

E;(n,,T,,c)=n’) c:R;,

« 2" order expansion adds additional terms, including ‘cross-
term’ dependence on change in temperature and density
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Emissivity Calculations Depend on Accurate Modeling of
Atomic Processes and Impurity Transport

* Change in relative emissivity depends also on curvature of
filtered response function RAT,)
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 Difference of relative emissivities removes 1st and 2nd order
terms, but leaves dependence on density from ‘cross-term,’
solve for T, using quadratic equation
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A Simple Feedforward Neural Network Was Tested on
Synthetic X-ray Data as an Alternative to Finding T,

* PyBrain, a modular machine learning library for Python, was
utilized to create the neural network

* A three-layer feedforward network was used

— Input layer with up to 461 nodes (20 for each ME-SXR array, 400 for
the TGIS, 1 for FIReTIP)

— The number of nodes in the hidden layer was optimized
* Unless otherwise stated, 40 hidden nodes were used

— Output layer had 20 nodes, for temperature profiles with the same
radial resolution as the ME-SXR arrays

— The layers were fully connected

* The Rprop- learning algorithm [Igel and Husken, Neuro-
computing 50 (2003) 105-123] is used for supervised training
of the neural network

— All input and outputs are scaled to the range of 0 to 1 for best results
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A Fully-Connected Three-Layer Neural Network Inputs X-ray
and Spectroscopic Data, Outputs Temperature Profiles

8SXR1 (r1)

sSXFH(rZ)

ME-SXR 1

) A‘“\\\\ X ":v L) =
i) OCNSKAA)F
RS A

SRS,

W
(> \\““‘( P
Eoymoll Yz Sl X

swael") L S
ZS5NEST V/‘Vé/ N/ —
SRTEHK At —

€ xrall) XSESH ST

KK
N )“""l"‘;/" 75

ME-SXR 2
Train with
Thomson
Scattering

8SXF§2( l-n) X ““;,6 "
LD ’,‘\QI

LA NS R
X AN 7T AAY N\
RO IEAL R TEK
IS IS
L RALNOPK RS Yoai®
€ /;JIZ/A’A?"\‘,’2@;\‘\‘&\\\\\\
S 24058, 2NN NSNS
NI HLHI KSR
£, ) il e S NN
AL I\ X \
Spectra C R AOXSENROD

(TGetc) S AN

r‘x‘

FIReTIP e

=]

Input Layer Hidden Layer Output Layer

@ NSTX-U APS-DPP 2012 — ME-SXR based Electron Temperature Profile Reconstruction, D.J. Clayton et al. (10/31/2012)



Synthetic X-Ray Data were Generated using Real Thomson
Data and Emissivity Coefficients from Atomic Models

« Electron temperature and density were obtained from
Thomson scattering, carbon density from CHERS

« Additional impurities were assumed to have the same
density profile as carbon (O 20% of C, N 10%, Fe 0.1%)

* Impurities were assumed to be in coronal equilibrium

« CHIANTI atomic database was used to calculate line and
continuum emission from each impurity

« Synthetic ME-SXR, TGIS, and FIReTIP diagnostics were
used to calculate expected signals

« (Gaussian noise was added to each signal

« To account for slow TGIS time response (relative to the ME-
SXR), an additional, correlated noise was added to each
channel of the diagnostic
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Neural Network Performance Improves as the Training
Dataset Grows

» Each discharge provides ~30-50 Thomson measurements
for training (only times with peak T, > 200 eV were used)

 Test case was tried on a NN trained with one shot, then on a
NN trained with 13 shots covering B, and /I, scans

« Error bars represent total RMS error throughout a discharge
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Fewer Hidden Nodes Generated Fits with Smaller RMS Error

* A large dataset and small number of hidden nodes provides
a neural network with the smallest error
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Reducing the Number of Hidden Nodes Smooths Out the
Temperature Profile, which can Miss Radial Structures

* A narrow band of depressed temperature (a “cold pulse”)
was added to the synthetic data

 With 20 Hidden nodes, the total RMS error was small, but
the pulse was not picked up

« With 80 hidden nodes, the network recognizes the pulse
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Multiple ME-SXR Arrays are Needed to Distinguish Changing
Temperatures from Densities and Impurity Concentrations

No Change

 When trained on one array,
network is unresponsive to
changes in one parameter

« A third (or more) arrays
may be beneficial when
several parameters vary e
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Network Works for Small Changes in Impurity Concentration,
but not for Large Influxes that are not Included in Training

50% C Increase 20% C, n, Increase, 20% T, Decrease

1.0 1.0
3 3
g 0.8f g 0.8
() (O]
— —
35 0.6} 3 0.6
-+ +J
© @©
— —
8 0.4 8 0.4
e e
() (O]
[ [
c 0.2 c 0.2
o o
|- —
° — Actual Profile w] — Actual Profile
@ 0.0l — 5 25 100um, epys=63eV @ 0.0F — 5 25 100um, cpy5=56eV
w —— 5,25 um, gy = 55 eV w —— 5,25 um, eqys = 72 €V

—— 25 um, g = 23 €V —— 25 um, g6 = 130 eV
~0-f50 110 120 130 140 150 ~0-f00 110 120 130 140 150
Major Radius (cm) Major Radius (cm)

50% Fe Increase 200% Fe Increase

1.0 1.0
T 2
g 0.8 g 0.8}
(O] (O]
—_ —
S5 0.6f > 0.6f
+J -+
© ©
— —
8 0.4 8— 0.4
e e
o [9)
[ [
c 0.2} c 0.2
o o
|- j -
© —— Actual Profile v] —— Actual Profile
v 0.0+ —— 5,25, 100 um, €pyq = 55 €V v 0.0t —— 5,25, 100 um, €z = 180 €V
w —— 5,25 M, e = 65 eV w —— 5,25 M, epys = 203 eV

— 25 um, €z = 28 €V — 25 um, €z = 23 €V
~0-50 110 120 130 140 150 ~0-f50 110 120 130 140 150
Major Radius (cm) Major Radius (cm)

NSTX-U APS-DPP 2012 — ME-SXR based Electron Temperature Profile Reconstruction, D.J. Clayton et al. (10/31/2012) 15



Unexpected Impurity Influx can be Accounted for with TGIS
or Other Spectroscopy Data

« TGIS data does an excellent job correcting small errors from
changes in impurity concentrations, and also does a
reasonable job correcting for very large influxes of impurities

« Other spectrometers, while not providing the spatial
resolution of the TGIS, might contribute additional

constraints, or could possibly be used in real-time
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Additionally, the TGIS Improves Neural Network Performance
with Density Fluctuations

« Emissivity is proportional to the electron density times
impurity density, TGIS can help identify which is changing

« With TGIS, the network might be able to determine n,, Z in
addition to T, (future work)
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Adding Additional Diagnostics to the Network can Further
Enhance Performance
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First Test on Experimental Data Used Raw, Uncalibrated Data
from Previous-Generation, Three-Array, Optical SXR Array
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Trained on 32 Discharges, this Neural Network Produces Fast
T, Profiles in Agreement with Thomson Scattering
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Neural Networks have Proven Useful for Fast T,
Measurements and will be Further Investigated and Applied

* |t has been demonstrated that neural networks can be used
to calculate T, from ME-SXR measurements

— Training with larger datasets greatly improves results, and the
number hidden nodes must be optimized for the highest accuracy
without smoothing over radial features

— One ME-SXR array is insufficient, though two arrays are adequate

— Adding additional data to the network, such as TGIS and FIReTIP,
further improve the accuracy of the results

* Future studies will include:
— Tests to see if n, and Z can also be found with additional arrays

— Physics studies using real data

NSTX-U APS-DPP 2012 — ME-SXR based Electron Temperature Profile Reconstruction, D.J. Clayton et al. (10/31/2012) 21



