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Neural Networks can be Used to Calculate Fast (>10 kHz) Te 
Profiles from Multi-Energy SXR Measurements 

•  Thomson scattering provides 60 Hz Te measurements 

•  With proper atomic and impurity transport modeling, 
multi-energy SXR data has been used to calculate high-
resolution (~10 kHz) Te between Thomson pulses 

•  Neural networks can calculate Te without these complex 
models, and can be used for real-time Te measurements 

•  These neural networks have been studied with synthetic 
x-ray data, and successfully tested with real data 
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Multi-Energy SXR Arrays Use High Time Resolution Diode 
Arrays with Different Filters for Coarse Spectral Resolution 

•  NSTX edge array used 5 diode arrays (0.3 µm Ti, 5, 15, and 
50 µm Be, and one without a filter for bolometry) 

•  20 spatial channels provided ~1 cm resolution of the plasma 
edge (R=127-147 cm) with a time resolution >10 kHz 

•  Digitally-controlled variable gain amplifiers provided excellent 
signal-to-noise for the low intensities measured in the edge 
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ME-SXR Edge Arrays 
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NSTX-U Will Have a New In-vessel ME-SXR Diagnostic with 
Core and Edge Subarrays 

•  Core ME-SXR for fast Te, 
impurity transport, MHD 
measurements 

•  Hi-res edge ME-SXR to 
study edge phenomena 
such as ELMs 

•  TGIS will have same view of 
the original neutral beam 
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A Transmission Grating based UV Imaging Spectrometer 
Provides Constraints on Impurity Concentrations 

•  Radially resolved spectrometer operates in a survey mode 
covering 30 to 700 Å with spectral resolution δλ/λ ~ 3%.  

•  Detector time resolution is less than for ME-SXR (400 ms will 
be upgraded to 10 ms for NSTX-U) 
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•  Linearization of elements contributing to x-ray emission 
allows separation of Te, ne, and impurity concentrations by 
using the differences between filtered measurements 

•  SXR emissivity, Ef, is a function of density and impurity 
response (a function of Te) weighted by concentration 

•  2nd order expansion adds additional terms, including ‘cross-
term’ dependence on change in temperature and density 

It has Previously been Shown that Electron Temperature can 
be Found Numerically from ME-SXR Measurements 
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•  Change in relative emissivity depends also on curvature of 
filtered response function Rf(Te) 

•  Difference of relative emissivities removes 1st and 2nd order 
terms, but leaves dependence on density from ‘cross-term,’ 
solve for Te using quadratic equation 

Emissivity Calculations Depend on Accurate Modeling of 
Atomic Processes and Impurity Transport 
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A Simple Feedforward Neural Network Was Tested on 
Synthetic X-ray Data as an Alternative to Finding Te 

•  PyBrain, a modular machine learning library for Python, was 
utilized to create the neural network 

•  A three-layer feedforward network was used 
–  Input layer with up to 461 nodes (20 for each ME-SXR array, 400 for 

the TGIS, 1 for FIReTIP) 
–  The number of nodes in the hidden layer was optimized 

•  Unless otherwise stated, 40 hidden nodes were used 
–  Output layer had 20 nodes, for temperature profiles with the same 

radial resolution as the ME-SXR arrays 
–  The layers were fully connected 

•  The Rprop- learning algorithm [Igel and Hüsken, Neuro-
computing 50 (2003) 105-123] is used for supervised training 
of the neural network 
–  All input and outputs are scaled to the range of 0 to 1 for best results 
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A Fully-Connected Three-Layer Neural Network Inputs X-ray 
and Spectroscopic Data, Outputs Temperature Profiles 
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Synthetic X-Ray Data were Generated using Real Thomson 
Data and Emissivity Coefficients from Atomic Models 

•  Electron temperature and density were obtained from 
Thomson scattering, carbon density from CHERS 

•  Additional impurities were assumed to have the same 
density profile as carbon (O 20% of C, N 10%, Fe 0.1%) 

•  Impurities were assumed to be in coronal equilibrium 
•  CHIANTI atomic database was used to calculate line and 

continuum emission from each impurity 
•  Synthetic ME-SXR, TGIS, and FIReTIP diagnostics were 

used to calculate expected signals  
•  Gaussian noise was added to each signal 
•  To account for slow TGIS time response (relative to the ME-

SXR), an additional, correlated noise was added to each 
channel of the diagnostic 

10 



APS-DPP 2012 – ME-SXR based Electron Temperature Profile Reconstruction,  D.J. Clayton et al. (10/31/2012)!

Neural Network Performance Improves as the Training 
Dataset Grows 
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•  Each discharge provides ~30-50 Thomson measurements 
for training (only times with peak Te > 200 eV were used) 

•  Test case was tried on a NN trained with one shot, then on a 
NN trained with 13 shots covering BT and IP scans 

•  Error bars represent total RMS error throughout a discharge 
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Fewer Hidden Nodes Generated Fits with Smaller RMS Error 

•  A large dataset and small number of hidden nodes provides 
a neural network with the smallest error 
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Reducing the Number of Hidden Nodes Smooths Out the 
Temperature Profile, which can Miss Radial Structures 

•  A narrow band of depressed temperature (a “cold pulse”) 
was added to the synthetic data 

•  With 20 Hidden nodes, the total RMS error was small, but 
the pulse was not picked up 

•  With 80 hidden nodes, the network recognizes the pulse 
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Multiple ME-SXR Arrays are Needed to Distinguish Changing 
Temperatures from Densities and Impurity Concentrations 

•  When trained on one array, 
network is unresponsive to 
changes in one parameter 

•  A third (or more) arrays 
may be beneficial when 
several parameters vary 
independently 
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Network Works for Small Changes in Impurity Concentration, 
but not for Large Influxes that are not Included in Training 
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Unexpected Impurity Influx can be Accounted for with TGIS 
or Other Spectroscopy Data 

•  TGIS data does an excellent job correcting small errors from 
changes in impurity concentrations, and also does a 
reasonable job correcting for very large influxes of impurities 

•  Other spectrometers, while not providing the spatial 
resolution of the TGIS, might contribute additional 
constraints, or could possibly be used in real-time 
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Additionally, the TGIS Improves Neural Network Performance 
with Density Fluctuations 

•  Emissivity is proportional to the electron density times 
impurity density, TGIS can help identify which is changing 

•  With TGIS, the network might be able to determine ne, Z in 
addition to Te (future work) 
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Adding Additional Diagnostics to the Network can Further 
Enhance Performance  

•  Adding line-averaged density 
from the FIReTIP diagnostic 
improves performance by 
~50% in some simulations 

•  This might be available for a 
real-time diagnostic 
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First Test on Experimental Data Used Raw, Uncalibrated Data 
from Previous-Generation, Three-Array, Optical SXR Array 
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Trained on 32 Discharges, this Neural Network Produces Fast 
Te Profiles in Agreement with Thomson Scattering 
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Neural Networks have Proven Useful for Fast Te 
Measurements and will be Further Investigated and Applied 

•  It has been demonstrated that neural networks can be used 
to calculate Te from ME-SXR measurements 
–  Training with larger datasets greatly improves results, and the 

number hidden nodes must be optimized for the highest accuracy 
without smoothing over radial features 

–  One ME-SXR array is insufficient, though two arrays are adequate 
–  Adding additional data to the network, such as TGIS and FIReTIP, 

further improve the accuracy of the results 

•  Future studies will include: 
–  Tests to see if ne and Z can also be found with additional arrays 
–  Physics studies using real data 
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