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DIlI-D *AE validation XP:

@ TAE/RSAEs computations are
validated

@ whole MHD theory!!!

@ growth/damping rates are
consistent

@ predictions
(NSTX, TFTR - TAEs, ITER)
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DIlI-D *AE validation XP:

@ TAE/RSAEs computations are
validated

@ whole MHD theory!!!

@ growth/damping rates are
consistent

@ predictions
(NSTX, TFTR - TAEs, ITER)

@ = address EP transport in a
regime when *AE modes are not
virulent [S. Sharapov, IAEA12]
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Motivations

@ Linear theory of EP instabilities is well understood
@ sophisticated codes, theories, confidence in predictions from V&V:

e NSTX, TFTR, DIII-D ... simulations
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Motivations

@ Linear theory of EP instabilities is well understood
@ sophisticated codes, theories, confidence in predictions from V&V:
o NSTX, TFTR, DIII-D ... simulations

@ Can we use them to compute EP profile relaxation?
@ If so need to validate: DIII-D, NSTX, ... XPs

@ s this procedure ready, effective to make predictions?

o 1.5D (saturation) versus more complete 2.5D (QL)

Is QL model in need?
If not, what else? should we wait?
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Employ linear theory to compute *AE critical EP gradient +
@ assume large number of unstable modes
o fast EP diffusion
o fixed background dampings, plasma profiles
@ using analytic theory compute the critical gradient dfBgp/0r

@ “improve” linear calculations with more accurate evaluation of
the growth/damping rates (use comprehensive code NOVA-K)

@ 1.5D procedure employs analyt. expressions to keep the
parametric dependence when the codes can not be applied

@ integrate critical EP beta to compute

(i) relaxed profiles
(i) losses
@ account for EP distribution in a simple form as per in
Kolesnichenko, NF'80, i.e. simple resonance vj ~ va (1/2D)
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OBepcr i+ +
Bep _ _ YiL+ VYecoll Vrad7 Yep = Yep/ (8Bep/dr)
ar V,EP

Three damping mechanisms are often dominant in DIII-D, ITER...:
ion Landau, electron collisional, radiative.
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Use particle conservation law [; r (Bep — BEpreiax) dr = 0 to
describe profile broadening:
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OBepcr i+ +
Bep _ _ YiL+ VYecoll Vrad7 Yep = Yep/ (8Bep/dr)
ar V,EP

Three damping mechanisms are often dominant in DIII-D, ITER...:
ion Landau, electron collisional, radiative.
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Use particle conservation law [; r (Bep — BEpreiax) dr = 0 to
describe profile broadening:
- e 0 ; . .
limit |Bgp| < |Bepe,it| result in the relaxed EP profile ri — ri 2 J
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| transport model | abbreviation | diff. mechanism |  applic. |
QL |/P, GLF23, TGLF diffusion transp.codes
transp.thresh. 7 crit.thresh. -
QL complete 2.5D diffusion future
crit.thresh. 1.5D crit.thresh. this talk

2.5D EP “true” QL theory application/coding is being developed
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1. Analytic model relies on

@ TRANSP or analytic profiles
@ analytic distribution for EP as or beams, slowing down.

@ n is taken at the maximum growth rate k, pgp ~ 1

0.06

10,

G.-Y. Fu, C. Z. Cheng, PoP’92
S e 1 s 2 s B.N.Breizman, S. E. Sharapov, PPCF’95.

2. Numerical apprzp)“ach (NOVA-K) relies on

@ the localized ¥*AE mode evaluation of the growth rates for normalization
of the analytic growth rates

@ scan of n/zgp (from k, pep ~ 1) ratio in the growth rate dependence to
find maximum

@ use n from the above procedure for growth rate normalization
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@ DIII-D validations
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DIlI-D
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t=360 ms
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@ 3 times selected

W o predict redistribution
e

o predict losses

0002

" @ compare with XPs
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1.2 E

3 Neutron Exp/Clas =
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@ Assume DD fusion cross-section is broad in energy dependence
o Compute neutron losses

@ Some small inaccuracy can be introduced.
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o ITER
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@ Stability diagram, B, (0), T;(0)

s plasma source of alphas

® o analytic theory

" @ a's slowing down d.f., ion

N Landau and trapped electron
" collisional dampings.

° @ predict the loss level, width of

the benign region to stable.

; <5% loss
A Well confined alphas . o with NOVA normaliz. crit.
0 thresh. is well determined

Temperature in keV (1keV ~ 10 million degrees)

005 008 007 008 003 01 011 012

Plasma pressure over magnetic field pressure ° non_lmear relaxatlon needs

further V&V effort
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@ Stability diagram, B, (0), T;(0)

s plasma source of alphas

® o analytic theory

" @ a's slowing down d.f., ion

N Landau and trapped electron
" collisional dampings.

° @ predict the loss level, width of

the benign region to stable.

; <5% loss
A Well confined alphas . o with NOVA normaliz. crit.
0 thresh. is well determined

Temperature in keV (1keV ~ 10 million degrees)

005 008 007 008 003 01 011 012

Plasma pressure over magnetic field pressure ° non_lmear relaxatlon needs

further V&V effort

ITER needs to use this QL model for operation planning (A. Polevoi, EPS’12). J
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@ no error bars for

ARIES-AT (betal 0.2)g
stable/unstable boundary

- .
25— TAE unstabie ARE-AS @ further validation against
50 nous« @0F  DIII-D experiments could

— narmalized .

3 determine the error bars for

Bkew . losses

10— saEs-cs @ can readily apply to future BP
= plasmas

e stabie @ help to identify the operational
@ TTTTTTTTTTTTITTITTTTTT T T regimes
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betad @ important for the guidance
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Status and plans

@ 1.5D critical threshold (QL?) model has been validated against
DIlI-D

@ validations help to understand limitations,
@ further validations are needed (DIII-D)

o applied to ITER, ARIES, other BPs

@ motivate further development of QL model, 2.5D (to be
similar to TGLF).

@ build into the codes like TRANSP.
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Status and plans

@ expected max effect from instabilities
with v = va ~ shaded area

@ = address EP transport in a regime

when *AE modes are not virulent
e @ fraction of effected alpha power

Pares = Pa <Vao — VH) VH/Vgo <25%

y @ 0.5D part of the QL model

Viresonance \
Ya. |. Kolesnichenko, NF’80
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Status and plans

expected max effect from instabilities

Vil
with v = va ~ shaded area
= address EP transport in a regime
. when *AE modes are not virulent
R
0 fraction of effected alpha power
) Pares = Pa <Vao—VH) V\I/Vgo < 25%
Y , 0.5D part of the QL model
N\
Viresonance \
Ya. |. Kolesnichenko, NF’80
too optimistic? sideband resonances ignored: v = va/(1£2/...)!!!
need to look at in validations?
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