Why Magnetically Confined Plasmas Rotate, and Why it is Important

Stanley M. Kaye Princeton Plasma Physics Laboratory Princeton University, Princeton NJ 08543

American Physical Society Meeting Atlanta, GA 31 March-2 April 2012

I would like to acknowledge the direct and indirect contributions of:

C. Angioni¹, P. Diamond², S.-H. Ku³, R. McDermott¹, J.-K. Park³, J. Rice⁴, F. Ryter¹ **W. Solomon³**, T. Tala⁵, W. Wang³, M. Yoshida⁶

- ¹ Max-Planck Institut fur Plasmaphsik, Garching, Germany
- ² UCSD, San Diego CA, USA
- ³ PPPL, Princeton University, Princeton NJ, USA
- ⁴ PSFC, MIT, Cambridge MA, USA
- ⁵ Association Euratom-Tekes, VTT, Finland
- ⁶ JAEA, Japan

This work was supported in part by U.S. DOE Contract # DE-AC02-09CH11466

In this talk, I will explore aspects of rotation and momentum confinement in magnetically-confined plasmas

- I. Background
 - Magnetically confined plasmas in tokamaks/spherical tokamaks
 - Rotation observed in other configurations (stellarator, RFP, linear devices), but will focus on tokamak/ST
- II. Why is rotation important
 - Stabilization of micro-, macro-turbulence leads to higher performance
- III. How do rotation profiles develop and evolve how can we understand rotation?
 - Rotation generation (driven, self-generated)
 - Transport of momentum
 - Find tokamak/ST results similar **provi**gives glimpse into underlying common physics
 - Predictions for fusion power devices (ITER)
- III. Future work and summary
 - What else do we need to understand

Rotation/momentum transport strongly coupled primarily to ion-gyroradius scale turbulence

Fusion-grade plasmas are magnetically confined in toroidal devices

Rotation profiles measured by Doppler shift of spectroscopic lines

Results from tokamaks/STs from around the world contribute to this talk

ASDEX-Upgrade (EU)

Alcator C-Mod (US)

DIII-D (US)

JET (UK/EU)

MAST (UK, ST)

JT-60U (Japan)

Evolution of key parameters during a plasma discharge

Plasma undergoes abrupt transition from a lower to a higher energy state at ~ 0.2 s

Low (L-) \rightarrow High (H-) confinement mode (observed on all devices)

In this talk, I will explore aspects of rotation and momentum confinement in magnetically-confined plasmas

- I. Background
 - Magnetically confined plasmas in tokamaks/spherical tokamaks
 - Rotation observed in other configurations (stellarator, RFP, linear devices), but will focus on tokamak/ST
- II. Why is rotation important
 - Stabilization of micro-, macro-turbulence leads to higher performance
- III. How do rotation profiles develop and evolve how can we understand rotation?
 - Rotation generation (driven, self-generated)
 - Transport of momentum
 - Find tokamak/ST results similar gives glimpse into underlying common physics
 - Predictions for fusion power devices (ITER)
- III. Future work and summary
 - What else do we need to understand

There are two main sources of radial transport in tokamaks/STs

- 1. Neoclassical collisional processes in toroidal systems
 - → sets minimum transport level
- 2. Anomalous- turbulent microinstabilities: scale lengths from the ion to the electron gyroradius

Most of the transport in tokamaks/STs is anomalous Rotation plays an important role in the suppression of microturbulence

Rule of thumb: turbulence suppression when $\omega_{ExB} > \gamma_{mode}$ 8

Larger ExB shear is correlated with reduced turbulence and reduced transport

Rotation important for the suppression of macro-scale MHD modes that can lead to sudden plasma termination

MHD mode growth follows damping of rotation – **disruption** follows

Higher rate of disruptivity with lower rotation

also on DIII-D: Garafalo et al, Nuc. Fusion (2001)

In this talk, I will explore aspects of rotation and momentum confinement in magnetically-confined plasmas

- I. Background
 - Magnetically confined plasmas in tokamaks/spherical tokamaks
 - Rotation observed in other configurations (stellarator, RFP, linear devices), but will focus on tokamak/ST
- II. Why is rotation important
 - Stabilization of micro-, macro-turbulence leads to higher performance
- III. How do rotation profiles develop and evolve how can we understand rotation?
 - Rotation generation (driven, self-generated)
 - Transport of momentum
 - Find tokamak/ST results similar gives glimpse into underlying common physics
 - Predictions for fusion power devices (ITER)
- III. Future work and summary
 - What else do we need to understand

Momentum balance is the basis for addressing the sources and transport of rotation and momentum

There is evidence that some "intrinsic drive" exists in tokamak/ST plasmas

Edge intrinsic torques lead to edge intrinsic rotation

Typically use L-H transitions in OH or RF-heated (torque-free) plasmas to study change in intrinsic rotation

Park (2011)

Self-generated flow is seen in a number of physical systems

Intrinsic drive and rotation appears to be controlled strongly by $\nabla p, \nabla T_i$ respectively

Intrinsic torque scales with ∇p

Solomon et al. NF (2011)

Intrinsic rotation scales with ∇T

Rice et al. PRL (2011)

Dependences consistent with ion-scale turbulence theory: Gurcan et al. PoP (2007), Wang et al. PoP (2010), Kosuga et al. PoP (2010), Gurcan et al. PoP (2010)

In this talk, I will explore aspects of rotation and momentum confinement in magnetically-confined plasmas

- I. Background
 - Magnetically confined plasmas in tokamaks/spherical tokamaks
 - Rotation observed in other configurations (stellarator, RFP, linear devices), but will focus on tokamak/ST
- II. Why is rotation important
 - Stabilization of micro-, macro-turbulence leads to higher performance
- III. How do rotation profiles develop and evolve how can we understand rotation?
 - Rotation generation (driven, self-generated)
 - Transport of momentum
 - Find tokamak/ST results similar gives glimpse into underlying common physics
 - Predictions for fusion power devices (ITER)
- III. Future work and summary
 - What else do we need to understand

Now that sources of rotation are established, need to understand what controls momentum transport & development of rotation profile

Langmuir probes can measure Reynold's stress and particle flux near the edge in lower temperature devices (Prager, PPCF 1999); these measurements are challenging on high temperature tokamaks/STs

Momentum transport characteristics can be inferred from experimental data

$$mnR\frac{\partial v_{\phi}}{\partial t} = \sum T_{input} + \nabla \cdot \Pi_{\phi} - \frac{mnR(v_{\phi} - v_{\phi}^{*})}{\tau_{damp}}$$

$$-\nabla \cdot \left(-mnR\left[\chi_{\phi}^{eff}\frac{\partial v_{\phi}}{\partial r}\right]\right)$$

$$-\nabla \cdot \left(-mnR\left[\chi_{\phi}\frac{\partial v_{\phi}}{\partial r} - v_{r}v_{\phi}\right]\right)$$

$$-\nabla \cdot \left(-mnR\left[\chi_{\phi}\frac{\partial v_{\phi}}{\partial r} - v_{r}v_{\phi}\right]\right)$$

$$Perturbation analysis allows separation of diffusive and pinch terms$$

$$Conduction \quad Convection$$

$$19$$

Steady-state analysis shows that momentum transport is always anomalous

Tala et al. PPCF (2009)

Perturbation techniques used to isolate χ_{ϕ} , v_{pinch}

NB pulse preferentially modifies rotation near core

Separation of v_{ϕ} , ∇v_{ϕ} essential to determining χ_{ϕ} , v_{pinch}

Use forward modeling to determine χ_{ϕ} , V_{pinch} by matching phase, amplitude of response

Tala et al. PRL (2009)

Perturbative momentum transport analysis reveals significant inward pinch in outer region of plasma

Developing a comprehensive theoretical model of momentum transport is challenging

- Need to know
 - Realistic boundary conditions
 - Importance of off-diagonal terms in turbulence generation
 - Nature of turbulence (strongly turbulent or near marginality)
- Fluid treatment of plasma can capture much physics, but almost always need to include kinetic effects
- Walidation of theoretical model through comparisons with experimental data

Are there any dominant parametric dependence (or lack thereof) predicted by theory that can be tested?

Some insight, but questions remain

Ion-scale turbulence theory predicts dependence of pinch number (Rv_{pinch}/χ_{ϕ}) on density gradient (R/L_n)

Theory

Peeters et al. Nucl. Fusion (2011)

Reduced fluid models also indicate linear dependence on R/L_n Peeters et al. PoP (2009) Yoon and Hahm (2011)

Experiment

Tala et al. Nucl. Fusion (2011)

Also, ASDEX-Upgrade, DIII-D, JT-60U, NSTX

ITG theory predicts dependence of pinch number (Rv_{pinch}/χ_{ϕ}) on density gradient (R/L_n)

Theory

Peeters et al. Nucl. Fusion (2011)

Reduced fluid models also indicate linear dependence on R/L_n Peeters et al. PoP (2009) Yoon and Hahm (2011)

Experiment

Tala et al. Nucl. Fusion (2011)

Theory calculations predicts **weaker** dependence than is observed in experiment

A fusion power production device is presently under construction (ITER) **Operating Parameters** 24 m a = 2.0 m(R/a= 3.1) R = 6.2 m $I_{p} = 15 \text{ MA}$ $B_{T}^{=} 5.3 T$ **Performance Parameters** Fusion Power ~ 0.5 GW Power Amplification ~ 10 Burn Flattop > 400 s 1 27

Do we know enough to extrapolate to ITER?

Making progress in developing a theory-based predictive capability, but not there yet

most critical in determining core rotation

Tala et al. Nucl. Fusion (2011)

Many open questions for "comprehensive" understanding

- A strong coupling between turbulence/ transport and ExB shear exists
 - Can we establish causality (is it possible)?
- Boundary conditions: typically no slip has, been assumed by theory (BC critical)
 - Edge flows observed, however
- Effect of core MHD, energetic particle modes on rotation
- Understand and quantify RF "torques"
- Influence of high-k (electron mode) turbulence on rotation generation/ momentum transport

LaBombard et al. Nucl. Fusion (2004)

Summary

- Rotation in tokamaks and STs can be large and can have a profound effect on discharge performance (transport and stability)
- Intrinsic rotation generation and momentum transport strongly coupled to ion-scale microturbulence
- A comprehensive theoretical understanding is at its early stages
 - Boundary conditions critical theory must apply across full plasma
 - Requires detailed validation with existing data

Backup

Fusion-grade plasmas are magnetically confined in toroidal devices

Helical magnetic field line topology described by safety factor

(Helicity critical for confining plasmas)

Describes magnetic field "pitch"

Poloidal rotation << toroidal rotation in tokamak/STs

Discrepancy between STs and higher aspect ratio tokamaks seen

Difference of V_{θ} with neoclassical predictions can be large in tokamaks

NSTX (from Bell et al., PoP 2010)

DIII-D (from Solomon et al., PoP 2005)

Neoclassical transport ~ Enhanced collisional transport due to connection length, particle trapping effects in toroidal geometries

ExB shear facilitates transitions to enhanced confinement regimes

Large E_r shear leads to lower power needed for L- to Hmode transition

McKee et al, Nuc. Fusion (2009)

• Electrode biasing in TEXTOR drives ExB shear and associated reduction in turbulence levels

Boedo et al, PPCF(2002)

Higher E_r shear facilitates the transition from L- to H-mode

Xu et al, Phys. Rev. Lett. (2000)

Radio-frequency heating of plasma also provides torque - Ubiquitous, but not well understood -

asymmetries are a source of viscous torque

gnetic field asymmetries can result from

ield ripple (finite # TF coils)

ror fields (coil misalignments or motion during discharge due to JxB forces) n-axisymmetric B-field perturbations at edge

DIII-D

C.

There is evidence that some "intrinsic drive" exists in tokamak/ST plasmas (T_{self-driven})

Edge intrinsic torques lead to edge intrinsic rotation

Typically use L-H transitions in OH or RF-heated plasmas to study change in intrinsic rotation

Rice et al. Nucl. Fusion (2007)

Perturbation techniques used to isolate χ_{ϕ} , v_{pinch}

NB step

Separation of v_{ϕ} , ∇v_{ϕ} essential to determining χ_{ϕ} , v_{pinch}

NB modulation 20 P_{NBI} (MW) 15 5 JET C ω_{ϕ} (krad/s) 42 38 34 30 8.0 8.5 9.0 9.5 10.0 Time (s)

Can solve for $\chi_{\varphi},$ V_{pinch} in source-free region from amplitude & phase of response

- Usually find source region broad – technique not valid
- Use forward modeling to determine χ_{ϕ} , V_{pinch}

Perturbative momentum transport analysis reveals significant inward pinch in outer region of plasma

44

Not all theory predictions are seen in the data

Theory indicates inward pinch should increase with increasing inverse aspect ratio (ε) Peeters et al, PoP (2009)

Experiments do not show this from device-to-device

Drift wave turbulence is basis for understanding dependences of intrinsic rotation/torque (stress)

- Conversion of turbulent energy to directed flow (leading theory)
- Driven by gradients in T, p, n; requires "symmetry breaking" (rotation imbalance in Φ)

ExB shearing can come from generation of Zonal Flows/GAMS (Geodesic Acoustic Modes)

- Flow in poloidal direction with m=0/n=0
- Associated with radial zones of varying E_r
- ω ~0 (ZFs) or few kHz (GAMs)

Turbulence/flow energy coupled strongly through energy conservation (and predator-prey paradigm)

- ZF is like predator (eats turbulence)
- Turbulence is like prey (eats gradients)
- Transport and turbulence reduced by ZFs

Gurcan et al. PoP (2007)

Predator-Prey relation observed in toroidal devices

3.5

2.5

1.5

X

Prey-Predator Cycles

Intrinsic rotation reversals may give insight into which specific drift wave modes are dominant

Alcator C-Mod finds confinement regimes/rotation directions depend strongly on density

High n

48

5

Rice et al. PRL (2011)

500

400

300

200

100

-10

-5

0

k_B (cm⁻¹)

Frequency (kHz)

Low n

500

400

300

200

100

-10

-5

0

k_R (cm⁻¹)

5

10

rrequericy (kmz)

Rice et al. to appear in Phys. Plasmas (2012)

Turbulence measurements indicate likely transition from TEM (low n_e , $T_e > T_i$) to ITG (high n_e , $T_e ~ T_i$) –dominated regime

High-k scattering shows drop in turbulence across k-spectrum with increasing ExB shear

