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The Perturbed Equilibrium Nonambipolar Transport (PENT) code
computes the Neoclassical Toroidal Viscosity (NTV) torque across
kinetic regimes in generalized geometry

» PENT uses the “combined theory” [1] developed for calculating NTV
across kinetic regimes

-  Emphasis: Bounce Harmonic Resonances & general geometry

- Equivalence: Kinetic energy in equilibrium stability computation (MARS-K)

Here we will point out, by comparison with various models, where
in the theory simplifying assumptions are or are not made and what
effect those assumptions have on the final computation

!Park, Boozer, Menard, Phys. Rev. Lett. 102 (2009)
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Computing NTV in perturbed equilibria

Torque from nonambipolar transport in non-axisymmetric fields
Perturbative approach valid when |7, | < |2n6W/| — linear MHD

General torque expression then written using the perturbed field,
displacement, and perturbed (anisotropic) pressure
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Computing NTV in perturbed equilibria
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Torgque from nonambipolar transport in non-axisymmetric fields

Perturbative approach valid when |7, | < |2n6W| — linear MHD

General torque expression then written using the perturbed field,
displacement, and perturbed (anisotropic) pressure

Perturbed pressure found using first order Drift Kinetic Equation
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Methods diverge when forming perturbed
pressure from first order Drift Kinetic Equation

Semi-analytic methods (limiting regimes, combined, and kinetic
energy) all seek integral solution

» Bounce average isolates non-axisymmetric Mclosed orbits! m

- Thin banana approximation (4) = ;d—b%dﬁAjB/’Ull \[i—/

s

Decoupled bounce harmonics f1 = » 4f/Ps

Krook collision operator C [fi] = vf1 °

» Origin of kinetic resonances and offset rotation
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Kim, Park, Boozer, Phys. Rev. Let. 110 (2013
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Methods diverge when forming perturbed
pressure from first order Drift Kinetic Equation

Semi-analytic methods (limiting regimes, combined, and kinetic
energy) all seek integral solution

» Bounce average isolates non-axisymmstric Mclosed orbits! @
- Thin banana approximation (A) = o %dﬁAJB/’U”

[1]
- Decoupled bounce harmonics f1 =) 6P,

- Krook collision operator C' [fi] = vf1 °

» Origin of kinetic resonances and offset rotation
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Kim, Park, Boozer, Phys. Rev. Let. 110 |2013|
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Despite divergence, final torque has a
common form in all methods

Final integral solution has quadratic dependence on perturbed
Action and complex resonance operator

1, oc/dwNT/d,uwaJ_g‘Q/deRTg
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Geometric factors in perturbed action can
contribute significant torque

5Jg — Mfah?PM (”UHJB)

$ dC2Py [(2E — 3uB) G + (2E — 2uB) 7V - €]

NTV is proportional to the square of the perturbed Action
» Often approximated as proportional to 6B

» &Je also contains a V-§ term from change in arc-length contributing to the
perturbed Jacobian

- This term is often dropped under the assumption E=uB

- The V- can become very large with realistic aspect ratio and shaping
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Geometric factors in perturbed action can
contribute significant torque
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Combined model can be
continued analytically
with Reduced Large-
Aspect-Ratio (RLAR)
geometric simplifications
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Geometry affects particle orbits, influencing
sensitive resonance conditions
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1Callen, Nucl. Fus. 51 (2011
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Geometry affects particle orbits, influencing
sensitive resonance conditions
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Super banana plateau is a consequence of A-resonance singularity

» Exists “regardless of geometry”, but magnitude sensitive to geometry-dependent fregs.

Physics lost if reduce A dependent fregs.

» Important computational challenge [Satake, PRL 107 (2011), Logan, Phys. Plasma (submitted)]
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Where PENT fits in: A NTV computation
summary
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~ Ly | solution...
§ passing :
- | » Focus on decoupled bounce
S- 7 .
&~ 10 harmonics (PENT,MARS-K)
o » Focus on pitch-angle scattering
' v—v MARS-K arc-length & CI[fi] collision operator (IMARS-Q)
~~a MARS-Q
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To obtain direct solution...

» Focus on full guiding center particle orbits (POCA by K. Kim NO6.00001)

Each method has its strengths...

» Now thoroughly benchmarked across kinetic regimes
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Tomorrow's challenge in NTV torque
modeling

WIXB+IxB -V -0ll=p[(v-V)dv+ (0v-V)v]+dp(v-V)v

Next major step in NTV computation is self-consistent torque
calculations

» Include anisotropic terms in initial perturbed equilibrium calculation
» Include other rotation effects (inertial terms) as well

» "General Perturbed Equilibrium”
» SWi implementation in MARS-K [Liu, Phys. Plasma 15, (2008)]

» Under development for coupled IPEC-PENT-POCA solver
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