

Study of lithium and carbon sputtering from lithium-coated graphite plasma facing components in the NSTX divertor

Coll of Wm & Mary Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehiah U Nova Photonics ORNL PPPL Princeton U Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Tennessee **U** Tulsa **U** Washington **U** Wisconsin X Science LLC

Filippo Scotti¹

V.A. Soukhanovskii², E.M. Meier², A.L. Roquemore¹, J-W. Ahn³, J.P. Allain⁴, R.E. Bell¹, A. Diallo¹, S.P. Gerhardt¹, M.A. Jaworski¹, R. Kaita¹, B.P. LeBlanc¹, A.G. McLean², M. Podestà¹ ¹PPPL, ²LLNL, ³ORNL, ⁴U.IIIinois U.C. 55th APS-DPP Meeting Denver, CO - November 11th-15th, 2013

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kvushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res. Kiev loffe Inst TRINITI Chonbuk Natl U NFRI KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA, Frascati CEA. Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep

Abstract

In this work, the behavior of lithium conditioned graphite PFCs in the NSTX divertor is characterized in terms of lithium and carbon sputtering yields and gross impurity influxes during H-mode ELM-free NBI-heated discharges. Impurity influxes and sputtering yield measurements in the NSTX divertor are derived from photometrically calibrated filtered cameras and divertor Langmuir probes via the S/XB method. Neutral lithium sputtering yield Y_{i} from solid lithium coatings in NSTX is found to be consistent with values reported from test stand experiments (with $Y_{i} \sim 0.03 - 0.07$). Temperature-enhanced sputtering yield is generally observed for surface temperatures above the lithium melting point (with $Y_{i} \sim 0.1 - 0.2$) in the proximity of the divertor strike point, leading to divertor gross lithium influxes of a few 10²¹ atoms/s. A moderate reduction of the carbon sputtering yield is observed with the application of lithium coatings with gross divertor carbon influxes of several 10²⁰ atoms/s.

This work was supported by U.S. DOE Contracts: DE-AC02-09CH11466, DE-AC52-07NA27344, DE-AC05-00OR22725.

Outline: lithium conditioning affects divertor impurity influxes, SOL transport, and core transport

- Divertor impurity influxes in NSTX:
 - Lithium sputtering consistent with physical and thermal sputtering
 - Reduction in carbon sputtering yield observed on lithiated graphite
 - Toroidal asymmetries in divertor lithium influxes follow LITER deposition
 - Penetration factors indicate divertor lithium retention stronger than carbon
- SOL/edge parallel and radial transport (via UEDGE modeling):
 - Stronger divertor retention for lithium than carbon
 - High classical/neoclassical diffusivity further helps prevent lithium accumulation (F. Scotti , NF 2013)
 - No effect of lithium radiation on divertor power balance
 - Divertor impurity retention weakens with reduced divertor recycling
- NSTX-U baseline scenario still includes lithium coatings on graphite PFCs:
 - Benefits observed with lithium conditioning
 - Lithium effectively retained in divertor
 - ELMs suppression results in carbon accumulation
 - Techniques developed in NSTX to limit impurity accumulation will be considered in NSTX-U

Evaporative lithium coatings routinely applied on NSTX plasma facing components for wall conditioning

- Graphite is the main PFC material in NSTX:
 - ATJ tiles on divertor and outer wall
 - ATJ and CFC tiles on center stack
 - Porous moly in outer divertor (LLD)
- Lithium coatings evaporated on PFCs [1]:
 - 100–300 mg of lithium applied between discharges using LITERs
 - nominal "coating" thickness ~20-40 nm $(\sim 10^{21} \text{ atoms/m}^2)$
- · Highly toroidally asymmetric deposition

Wall conditioning via lithium evaporative coatings on graphite PFCs results in carbon accumulation

- Benefits observed with lithium conditioning:
 - reduction in deuterium wall recycling
 - re-attachment of inner divertor, disappearance of MARFE [1]
 - deuterium inventory control
 - via reduced recycling [2]
 - increase in energy confinement time
 - reduced transport at lower v_e^* [3]
 - suppression of ELMs
 - due to changes in n_e profiles [4]
- However:
 - carbon inventory increased by 3-4X [5]
 - low core lithium density $(n_{Li}/n_e < 0.1\%)$ [6]
 - high-Z impurity accumulation leads to core P_{rad} up to 50% of P_{inj} [7]
- F. Scotti, JNM 2011.
 V.A. Soukhanovskii, IAEA 2010.
 S.M. Kaye, NF 2013.
 R. Maingi, NF 2013.

[5] F. Scotti, NF 2013.[6] M. Podesta, NF 2012.[7] S.F. Paul, JNM 2009.

NSTX divertor diagnostics well suited for analysis of impurity influxes and sputtering yield

- Diagnostics for divertor impurity influxes :
 - 1D/2D cameras (Li I, Li II, C II, C III, C IV) [1]
 - divertor spectrometer VIPS2 (C II, CD) [2]
 - Langmuir probes for T_e , n_e , Γ_{D+} [3]
 - two color IR thermography for T_{surf} [4]
 - inverse photon efficiencies (S/XB) from ADAS
 - sputtering yield derived from impurity influxes

$$\Gamma_{i} = \frac{S}{X B} \Gamma_{ph} \qquad Y = \frac{\Gamma_{imp}}{\Gamma_{D+}} = \frac{\Gamma_{ph-imp}S / XB_{imp}}{J_{SAT}}$$
[1] Scotti, RSI 2012.
[2] Soukhanovskii, RSI 2010.
[4] McLean, RSI 2012.
[5] $\frac{90}{50}$
 $\frac{90}{40}$
 $\frac{90}{50}$
 $\frac{90}{40}$
 $\frac{90}{50}$
 $\frac{100}{50}$
 $\frac{100}{200}$
 $\frac{200}{300}$
Toroidal Angle (Degrees)

"Thermal" lithium sputtering yield is expected to be the dominant sputtering mechanism in the NSTX divertor

- Physical sputtering is the main lithium sputtering process
 - threshold energy $E_{th} \sim 10 \text{ eV}$, 2/3 sputtered as ions \rightarrow "invisible" to plasma
 - sputtering yield (Y_{Li}) ~ constant for typical incident energies in NSTX
- "Thermal" enhancement observed in test stands (PISCES [1] and IIAX [2])
 - expected to dominate lithium influxes for $T_{surf} < 550^{\circ}C$ for typical NSTX divertor incident ion fluxes ($\Gamma_{D+} < 10^{23}$ ions/m²/s)

WNSTX-U

Lithium and carbon sputtering in the NSTX divertor, F. Scotti (11-12-2013)

External and plasma heating of divertor PFCs allow study of thermal response of Y_{Li} in NSTX

Sputtering yields derived at different toroidal and radial locations via 2D visible and IR cameras and LP array

- Four different toroidal locations analyzed:
 - Diagnostic graphite tile $\Phi = [142^{\circ}-148^{\circ}]$
 - Cold LLD segment $\Phi = [150^{\circ}-160^{\circ}]$
 - Hot LLD segment + thick coating location $\Phi = [120^{\circ}-135^{\circ}]$
 - Hot LLD segment + thin coating location $\Phi = [10^{\circ}-30^{\circ}]$
- Six different radial locations analyzed:
 - R = [63, 64, 67, 70, 71, 72] cm from outer strike point to far SOL

Lithium and carbon sputtering in the NSTX divertor, F. Scotti (11-12-2013)

Temperature enhanced sputtering observed as a result of external and plasma heating of divertor target

- T_{surf} dependence of Y_{Li} observed as a result of external heating (up to 2X)
 - consistent with expected T_{surf}-dependence of Y_{Li}
 - comparable response from moly and graphite with thick lithium coatings
- Enhancement in sputtering yield at strike point only with thick coatings

Experimental Y_{Li} consistent with physical sputtering with signature of T_{surf} dependent sputtering yield

- Y_{Li} from solid coatings consistent with SRIM-TRIM from LiD/Li (Y_{Li}~3-7%)
- Y_{Li} from liquid coatings consistent with "thermal" sputtering (Y_{Li}~10-20%)
 - consistent results obtained over large set of discharges (Figure a)
 - data averaged over 1 ms and 2-4° toroidally
 - leading edge effects lead to variation of T_{surf} over graphite tile
- Transient anomalous enhancement of Y_{Li} at the OSP observed with fresh thick coatings (Figure b)
 - enhancement follows toroidal asymmetry in lithium deposition profile

Carbon sputtering yield has contributions from physical and chemical sputtering processes

- Carbon: physical (Y_{phys} , E_{th} ~30 eV) and chemical (Y_{chem}) sputtering processes
 - Y_{chem} dominates in low T_e plasmas
 - depends on incident flux and T_{surf}
- Reduction in Y_C on lithium-coated graphite observed in test stands (e.g. IIAX)
 - Associated to formation of ionic bonds between C Li [Racic, JNM 2009]
 - Observed in MD simulations due to Li-C-O chemistry [Krstic, PRL 2013]
- In NSTX graphite surface roughness>> lithium "thickness" [Taylor, APS 2013]

WNSTX-U

Moderate reduction in carbon sputtering yield in near/far SOL observed with lithium conditioning

- Y_c measured in near/far SOL during first lithium evaporation on boronized graphite in 2008 (190 mg fresh Li evaporation)
- Moderate reduction in sputtering yield (Y_C) with application of lithium:
 - Y_c from C II (VIPS2 at 392 nm): physical + chemical component
 - Complicated by $T_{\rm e}$ sensitivity of S/XB
 - Uncorrelated with increase in core C inventory (due to ELM suppression)

Significant contribution from chemical sputtering is still observed in discharges with lithium conditioning

- Significant contribution from chemical sputtering:
 - incident fluxes from D- γ (using S/XB from ADAS)
 - chemical yield from CD(430 nm)/D-γ
 - uncertainty in D/XB₄₃₀ coeff. (20-40) [McLean]
 - total sputtering yield from C II(426 nm)/D-γ
 - (a) S/XB for both chem. and phys. contrib
 - (b) D/XB₄₂₆ for chem. [McLean, PhD thesis] and S/XB for phys. contribution

Measured Y_C on lithium conditioned graphite below estimates for physical and chemical sputtering

- In 2010, only lithium-coated divertor conditions (typical dose 0-400 mg Li):
 large set of 2D camera data: C II (658 nm), C III (465 nm), C IV (580 nm)
- Y_C near SOL reduced with respect to $Y_{phys}+Y_{chem}$ estimates [Eckstein+Roth]
 - Statistical analysis of 40 ELM-free H-modes (thin "coatings" only)
 - Y_{Chem} data from VIPS2 still need to be included in analysis
- However:
 - No clear dependence on amount of lithium
 - No increase in Y_C during discharge
- Y_C reduction from lithium coverage limited by:
 - Lifetime of coatings (intercalation, erosion)
 - Higher OSP T_e
 - Surface roughness >> "coating" thickness
 - Effect of tile leading edges
 - Migration/redeposition of carbon from other sources

Modifications of lithium coatings in the divertor evident from visible imaging after one single discharge

- Visible imaging indicates clear change in surface conditions after repetitive discharges without lithium evaporation:
 - 6 g of Li before #142485
 - changes in surface reflectivity after one single discharge
 - suggest changes on thickness ~100s nm (λ_{vis})
- No clear change in Y_c:
 - First useful discharge, 4 discharges after evap.
 - No increase during day
 - But in-vessel cumulated lithium ~ 900 g
 - Energy dependence consistent with Y_{phys}+Y_{chem} - Absolute value reduced

Toroidal asymmetries in lithium influxes/sputtering yield observed closely following LITER deposition profile

- Anomalous transient Y₁₁ associated with toroidal asymmetries in lithium influxes
- Asymmetries occurring only close to the strike point
 - Closely follow LITER deposition profile
- Possibly associated with different thermal response, degradation of lithium coatings or generation /ejection of lithium droplets

Lithium Monolayers/s at 650 C

0.000

80

40 30

80

70

60 50

40 30

0

Radius (cm)

0.077 0.153 0.230 0.307 0.384

Modeled LITER

Measured Li

300

0.460

Lithium and carbon sputtering in the NSTX divertor, F. Scotti (11-12-2013)

Toroidal asymmetries in carbon influxes are typically observed due to leading edges of divertor tiles

- Unlike for lithium, no toroidal asymmetries in carbon influxes are observed as a result of toroidally asymmetric lithium deposition
 - More spectroscopic coverage of neutral carbon emission needed
- Toroidal asymmetries clearly observed as a result of leading edges due to tile-to-tile misalignments and shallow field lines

Upper estimate for penetration factor of divertor lithium sources suggest strong lithium divertor retention

- Lower divertor largest source due to LITER deposition ^{100.0} pattern [Soukhanovskii, IAEA 2010]
- OSP influxes from database using constant S/XBs:
 - Large neutral lithium divertor influxes
 - 1-6x10²¹ atoms/s (Li I)
 - Largely reduced (>x10) lithium ionized influxes
 - Suggest large re-deposition fraction $(\lambda_{mfpLi} < \rho_{Li})^*$
- Core penetration factors for OSP sources fitting core ¹ particle inventories

- F ~10⁻⁴-10⁻³ from Li I ; F~10⁻³-10⁻² from Li II

$$\frac{dN_Z(t)}{dt} = -\frac{N_Z(t)}{\tau_Z} + \sum_i F_i \Gamma_i,$$

$$N_Z(t) = F_i \exp\left(-\frac{t}{\tau_Z}\right) \int_0^t \Gamma_i(t) \exp\left(\frac{t}{\tau_Z}\right) dt.$$

* Consistent with Allain NF 2011

🖤 NSTX-U

Upper estimate for penetration factor of divertor carbon sources suggest divertor retention worse than lithium

- OSP influxes from database using constant S/XBs:
 - Consistent divertor carbon influxes derived from C II, C III, C IV
 3-10x10²⁰ ions/s (C II)
- Core penetration factors for OSP sources fitting core particle inventories
 - F~0.1-0.5 from C II
- Suggest worse divertor retention for carbon
- Poloidal distribution of carbon sources not understood
 - Upper divertor, wall sources not diagnosed
 - Study divertor influxes is one part of the problem

2D multi-fluid UEDGE simulations performed to investigate reasons for difference in penetration factors

Lithium and carbon sputtering in the NSTX divertor, F. Scotti (11-12-2013)

NSTX-U

Charge state resolved model employed including lithium and carbon impurities

- Charge state resolved model for both carbon and lithium
 - Analytic solution of impurity parallel momentum equation
- Atomic rates from ADAS
 - Latest lithium rates from Auburn group [1]
- Carbon and lithium radial transport
 - Radially uniform diffusivity for all charge states
 - Radially varying velocity for C⁶⁺, Li³⁺ to match CHERS data
 - Core C¹⁺-C⁵⁺ (Li¹⁺-Li²⁺) influx balanced by C⁶⁺ (Li³⁺) outflux \rightarrow zero net flux

Recycling and impurity sputtering adjusted to match divertor heat flux, D- α , C II, Li II and particle balance

- Synthetic diagnostics used to reproduce experimental spectroscopic views
- Target recycling adjusted (R=0.95) to match strike point heat flux and D- α
- Carbon sputtering adjusted to match peak divertor C II
 - Haasz-Davis yield scaled by 0.4 at divertor \rightarrow Y_C ~ 1%
 - consistent with moderate reduction in Y_C with application of lithium
- Uniform lithium sputtering at target to match Li II
 - difficult to match Li I and Li II brightness for same Y_{Li}
- No effect on heat flux due to lithium radiation (even for 10X higher Y_{Li})
 - divertor radiation still dominated by C and D

 \mathbb{D} NSTX-U

Lithium and carbon sputtering in the NSTX divertor, F. Scotti (11-12-2013)

Difference in parallel impurity profiles observed between carbon and lithium in near target region and upstream

- Better divertor trapping of lithium ions with respect to carbon, weaker upstream pickup
- However, to match exp. lithium profiles higher perp. diffusivity was used for lithium with respect to carbon
 - affects parallel impurity profiles, reducing upstream pickup
 - even with D_{Li}=D_C, lower upstream contamination for lithium wrt carbon
- To address causes for differences in parallel transport, higher resolution slab simulations with same transport coefficients

s distance from midplane L_c midplane-target connection length

UEDGE simulations in simplified slab geometry to study SOL parallel impurity transport for carbon and lithium

- Simulations in slab geometry with NSTX-like plasma parameters:
 - Fixed pitch angle $(B_p/B_T \sim 0.1)$
 - 12 m midplane-target connection length ~1mm flux surface in NSTX
 - 104 poloidal cells (80 cells from X-point to target), 16 radial cells
- Stronger divertor retention (n_{min}/n_{target}) for lithium than carbon
- Stronger midplane trapping (n_{midplane}/n_{min}) for carbon than for lithium
- Divertor retention improved for both carbon and lithium at increased recycling

Weaker upstream lithium contamination due to short ionization λ_{mfp} and weaker $\nabla(Ti)$ force in slab simulations

- ∇T_i force weaker for lithium due to lower charge state^{0.0001}

WNSTX-U

1-s/L

Summary

- Divertor impurity influxes from plasma material interaction:
 - Lithium sputtering consistent with expectations from physical sputtering and thermal sputtering
 - Reduction in carbon sputtering observed with lithium conditioning
 - Toroidal asymmetries in divertor lithium influxes follow LITER deposition
 - Penetration factors indicate divertor lithium retention stronger than carbon
- SOL/edge parallel and radial transport via UEDGE modeling:
 - Stronger divertor retention for lithium than carbon
 - High neoclassical diffusivity further helps preventing lithium accumulation
 - No effect of lithium radiation on divertor power balance
- NSTX-U baseline scenario still includes lithium coatings on graphite PFCs:
 - Significant benefits observed with lithium conditioning
 - Lithium effectively retained in divertor
 - ELMs suppression results in carbon accumulation
 - Several techniques developed in NSTX to suppress impurity accumulation will be considered in NSTX-U