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Abstract 

As fusion reactors scale up in size, power, and duty cycle, the quantity of material 

eroded from the plasma-facing components (PFCs) will rise to levels far above those 

seen in prior experiments.  Changes to PFC composition and topography due to 

global-scale material migration could have drastic effects on tokamak operation, 

especially in mixed-material machines such as NSTX-U and ITER.  As a first step in 

understanding tokamak-induced material migration in a compact geometry, net 

erosion of carbon PFCs in NSTX is modeled using the OEDGE code suite (DIVIMP, 

EIRENE, and OSM) [P. Stangeby et al., J. Nucl. Mater. 313-316, 883 (2003)].  The 

sensitivity of erosion patterns to various core and divertor plasma parameters is 

examined.  A realistic NSTX plasma background is then applied to the NSTX-U 

geometry in order to provide an estimate of net erosion patterns that will be seen in 

NSTX-U’s all-carbon initial phase.  These simulations are used as a guide for the 

optimal placement of erosion diagnostics (quartz crystal microbalances, witness 

samples, and marker tiles) for use in the NSTX-U startup campaign. 

 
 

Work supported by US DOE contract DE-AC02-09CH11466 and the DOE Fusion Energy Sciences 

Fellowship Program. 
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Erosion and migration of plasma facing materials is a 

potential issue for future fusion devices 

• Excessive erosion of PFCs can lead to reduced lifetimes and 

have an unknown impact on plasma operation 

– Not a major problem in current devices, but will get much more 

noticeable as we move to high power and high duty cycle 

• Crude estimates indicate large  

    amounts of gross erosion in  

    next-step devices 

– Scaling based on charge- 

exchange neutral flux to walls 

– Estimates assume poloidal 

uniformity 

GOAL OF THIS POSTER:  

Assess gross erosion rates along the outer wall of NSTX, for a variety 

of outer divertor conditions, using advanced computing tools 

1P.C. Stangeby, JNM 2011 
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OEDGE (OSM-EIRENE-DIVIMP) is a code suite for SOL 

modeling, specializing in impurity transport 

• OSM (Onion Skin Model) is a 1D plasma fluid code 

– Integrates plasma fluid equations along SOL flux tubes, starting at 

divertor targets and extending upstream 

– Can map out 2D SOL profiles without having to specify D┴ 

 

• EIRENE is a hydrogenic neutral Monte Carlo code 

– Handles neutral friction, recombination, charge exchange, and other 

atomic processes 

– Provides various source/sink terms to OSM when run iteratively 

 

• DIVIMP is an impurity Monte Carlo code 

– Follows impurity ions/neutrals from birth to death 

– Allows detailed accounting of where impurities accumulate 
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Computational grid is based on real magnetic geometry 

Magnetic equilibrium from 

EFIT turned into rectangular 

plasma grid by DG/Carre 
Triangular mesh 

(6848 cells) used 

by EIRENE for 

neutral dynamics 

Plasma dynamics are calculated 

on rectangular grid (36 radial 

rings x 130 poloidal cuts) 
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Wall is discretized into 112 elements that mimic the actual 

NSTX PFC locations 

  

Inner Wall 

Inner Target Outer Target 

Outer Wall 

GAP 

GAP 

Wall Index 1 

 

Wall Index 30 
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• Iterated with EIRENE to calculate particle/energy sources 

– Terms highlighted in RED 

 

• Target n, Te, Ti taken as boundary condition for initial cell 

– Subsequent cells use n, Te, Ti from previous cell for B.C. 

– Terms highlighted in GREEN 

 

• Solves 1D fluid equations for (n, Te, Ti, v) in each cell using 

a Runge-Kutta solver 

 

– Particle conservation 

 

We use a conduction-limited OSM method for calculating 

background plasma solutions 
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We use a conduction-limited OSM method for calculating 

background plasma solutions 

– Energy conservation (electrons) 

 

 

 

– Energy conservation (ions) 

 

 

 

– Momentum conservation 

 

 

 

 

*Note: For those familiar with OEDGE, this is SOL Option 22 
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A sensitivity analysis was designed around a well-diagnosed 

NSTX discharge 

• Shot 139396 is a discharge from 2010 with the outer strike 

point on the Liquid Lithium Divertor (LLD)  

– ELMy H-mode                  -- 4 MW NBI-heated 

– 800 kA                              -- Low triangularity 

– Both divertor legs are attached 

 

 

• Created a consistent scan of outer target plasma conditions 

by inputting different Langmuir probe values for ntarget, Ttarget 

and letting OSM solve for plasma background 

– Kept target pressure (and hence upstream pressure) constant 

– Inner target held fixed at Te~Ti~5 eV, Ne~0.5-4E20 m-3 
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Electron temperature calculated by conduction-limited OSM 
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Plasma density calculated by conduction-limited OSM 
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D0 density (calculated by EIRENE) at wall decreases with 

increasing target temperature 

Ttarget 

~2 eV 

Ttarget 

~5 eV 

Ttarget 

~20 eV 

Ttarget 

~50 eV 

1010 1012 1014 1016 1018 1020 m-3 

High neutral 

density due to 

recombination 
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D2 density (calculated by EIRENE) at wall also decreases with 

increasing target temperature 

Ttarget 
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Poloidal profiles of D0 and D+ flux to wall and average 

incident energy show clear differences between the 4 cases  
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Erosion models based on empirical formula and sputtering 

databases 

• Physical erosion model: Based off of Bohdansky formula, an 

empirical fit to numerous lab measurements 

 

 

 

 

 

 

– No sputtering below threshold E 

– Eth for D->C: 30 eV 

• Chemical erosion model:  
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Each of 4 cases exhibit clear differences in gross physical 

and chemical erosion rates… 
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…But differences effectively disappear when looking at total 

gross erosion rates 
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Discussion 

• Exponential increase in gross erosion on wall closer to target 

 

• Hotter, less dense plasmas exhibit more physical sputtering  

– Despite lower particle flux, ions and atoms are above the threshold 

energy for physical sputtering. 

 

• Cold, dense plasmas lead to more chemical sputtering 

– No threshold energy for chemical sputtering 

– More particle flux to target due to higher density 

– More charge exchange neutrals to wall due to higher neutral density 

 

• Total gross erosion appears to be roughly independent of 

outer divertor conditions 

– Does this hold for higher power, other plasma shapes? 
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Uncertainties in inner divertor modeling have negligible effect 

on outer wall gross erosion 
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Next Steps: Better plasma backgrounds, deposition profiles 

with DIVIMP 

• The real quantity of interest in tokamaks is net erosion      

(i.e. gross erosion – gross deposition) 

– DIVIMP can follow a large number of “eroded” particles launched 

according to the magnitude and distribution of gross erosion 

 

• Requires reliable plasma solutions throughout the machine 

– Impurity transport is a global process 

– Current NSTX OSM solutions are discontinuous at stagnation point, 

creating an erroneous particle trap 

 

• Region between edge of plasma grid and outer wall is 

currently crudely modeled 

– Filling the empty space with plasma flux tubes might increase fidelity 

of simulation 

19 



NSTX-U Jake Nichols – 55th APS-DPP -- OEDGE Modeling of Material Migration in NSTX 

Next Steps: A mixed material migration model for NSTX-U 

• This analysis assumes a 100% carbon first wall and divertor, 

but NSTX-U will have periodic lithium evaporations (like 

NSTX) for density/ELM control 

– Sputter yields and reflection coefficients change with changing 

surface composition, chemistry (poorly understood) 

– Li coverage changes throughout campaign due to new evaporations, 

plasma transport 

 

• Possible way forward: something akin to the WallDYN model 

[K. Schmid et al., J. Nucl. Mater., S284-S288, 415 (2011)] 

– Joins impurity transport in plasma (via DIVIMP) to surface evolution 

via a system of coupled differential algebraic equations 

– Currently in development for JET and ITER (Be, C, W) 
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Next Steps: Reinstall diagnostics for NSTX-U 2014/15 run 

• Material migration studies will be a 

component of the inaugural NSTX-U 

experimental campaign (2014-15) 

 

• Related diagnostics 

– Extensive in-tile Langmuir probe array, for 

OSM reconstructions 

– Divertor spectroscopy and filtered cameras, for 

gross erosion measurements 

– Materials Analysis and Particle Probe (MAPP), 

for shot-resolved surface analysis 

 

• 3 Quartz crystal microbalances (QCMs) 

– 1 for characterizing Li evaporation 

– 2 for day-resolved net erosion measurements 
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Next Steps: Plan post-mortem tile analyses for after the 

NSTX-U 2014/15 run 

• Poloidal array of silicon witness plates on outer wall 

– Campaign-integrated information on deposition and erosion due to 

charge exchange neutrals 

– Easy to install and remove 

– Li/C/O concentrations from ion beam analysis, useful for 

benchmarking mixed material simulations 

 

• Plan to remove as many divertor tiles as possible for post-

mortem ion beam analysis 

– Key data points for net erosion and mixed material migration in 

plasma-contacted regions 

– If Li layers exist, tile archaeology will provide “time-resolved” 

measurements of Li migration 
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Summary 

• OEDGE (OSM-EIRENE-DIVIMP) is established as a tool for 

studying erosion in NSTX 

 

• Clear poloidal variation is seen in gross erosion patterns 

– Exponential increase along outer wall when moving toward divertor 

– Peak gross erosion rate of ~100 nm/s (at strike point) 

 

• Gross erosion pattern does not appear to depend on outer 

divertor target temperature/density 

 

• Further experimental and modeling studies are planned for 

NSTX-U 

23 



NSTX-U Jake Nichols – 55th APS-DPP -- OEDGE Modeling of Material Migration in NSTX 

Email for poster copies 

 


