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NSTX has used HeGDC+boronization as well as lithium 
evaporation for wall conditioning"

We find that:"
•  Lithiated discharges generally have lower collisionality"
•  Collisionality unifies the scalings: Strong increase of normalized confinement with 

decreasing ν*	


•  Collisionality changes primarily due to electron temperature profile broadening"
 "
In this poster, we will explore the reasons for the strong scaling with collisionality!

Can the difference in dimensional parameter scalings be reconciled?!

•  Strong BT, weak Ip scaling in unlithiated discharges"
•  H98y,2 scaling in lithiated discharges"

The strong dependence of global confinement on between-shot 
Li deposition and collisionality is straightforwardly prominent in 
the Li Scan "
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Not all dimensionless variables are fixed across range of ν*	
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The variation in Te and Te profile broadness is the reason ν* 
(and ρ*)  varies  (ν* ~ 1/Te

2)"
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The Te broadening reflects a strong reduction in electron 
transport with decreasing collisionality in the outer region 
of the plasma"

This can be seen in both χe and χe/χGB, where χGB ~ ρs
2cs/a"

Also in Li scan"

There is a general increase of anomalous ion transport in 
outer regions with decreasing collisionality, but the 
dependences are more complicated"
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H-mode confinement scales differently in the scenarios"

Two methods were used to change collisionality in NSTX discharges: "
•  Vary Ip, BT at constant Ip/BT (fixed Li + no Li): Nu scan"

•  Vary amount of between-shots Li evaporation (fixed Ip & BT): Li scan"
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ρ* (=ρs/a, a constant) changes 
across range of collisionality"

Primarily due to Te profile 
broadening"

Dependence on ν* even stronger when confinement normalized by ρ* trends"
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•  Express confinement scaling in terms of dimensionless parameters                                 
ΩτE = BτE = ρ*α f(ν, β, Te/Ti, κ, q, …….) where α = -2 for Bohm and α = -3 for 

gyroBohm scaling  
–  NSTX HeGDC+B discharges found to be consistent with gyroBohm  (Kaye, 2006) 

•  For the Li scan, B, q, <β>, κ, a … constant for all discharges 

Strong dependence of normalized confinement on n* also in “Nu Scan”"

•  q, β vary strongly in Nu Scan (also constant a) 

– Constrain data to qa/2 = 2-2.5 and <βT> = 8.5-12.5% 

ne and Zeff variations do not control the variation in ν*	



Would expect a linear dependence between parameter pairs 
if they were controlling factors  (ν* ~ neZeff) 
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•  Overall increase in χi/χi,neo with decreasing collisionality, 
but there is large scatter even at similar νe

*	


   ∼Neoclassical (NCLASS) ion transport at lowest collisionality "
   (factor of ~2 uncertainty in χi/χi,neo )"

•  Ion transport also correlated with rotation shear"

High-k ETG becomes more stable for lower collisionality 
discharges"

•  Comparison of experimental R/LTe to analytic ETG critical 
gradient (Jenko et al., 2001) indicates reduction of ETG drive 
as collisionality decreases 
–  Consistent with reduction in electron transport 

•  Linear gyrokinetic indicated 
ETG completely stabilized 
for low collisionality 
discharges"

•  Stability due to reduced 
Te  gradient"

"
•  Reduction of high-k 

turbulence (krρθ ~ 5 – 30) at 
lower collisionality in 
pedestal region"

"(Canik 2011)"
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Summary and Conclusions"
"
•  Collisionality is the unifying parameter in understanding confinement 

trends in NSTX plasmas"
•  Normalized confinement shows a strong and favorable dependence with 

decreasing collisionality"
•  Trend is even stronger when Bohm or gyroBohm variation of ρ* is 

taken into account"
•  Improved confinement is governed primarily by reduction in electron 

transport in outer region"
•  Broader Te profiles with decreasing νe

*"
•  ETG, microtearing more stable going from high to low νe

*"
•  Ions, however, become more anomalous going from high to low 

collisionality "
•  Hybrid TEM/KBM mode unstable at low νe

*"
•  Need to assess respective roles of νe

* and rotation shear"
•  Will be able to explore these trends at even lower collisionality (5x) 

with more control of the rotation profile on NSTX-U!

Low-k modes show more complicated dependence"
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•  Linear GYRO calcs indicate microtearing 
growth dominates low-k spectrum at high 
collisionality"

•  At low collisionality, microtearing 
becomes weaker"
•  Consistent with reduction in electron 

transport going from high to low collisionality"
•  Low-k hybrid mode (TEM/KBM)  

predicted to exist at low collisionality"
•  Consistent with increase in ion transport"
•  Can provide some electron transport"

•  Mode growth rates near γEXB at low 
collisionality"
•  Non-linear calculations underway to assess 

effect on predicted transport levels"
•  Li scan shows similar result"

Nu Scan"


