

Comparison of resistive MHD simulations and experimental CHI discharges in NSTX

Bick Hooper, LLNL Carl Sovinec, Univ. of Wisconsin Roger Raman, Univ. of Washington Fatima Ebrahimi, Univ. New Hampshire

> Division of Plasma Physics American Physical Society Denver, CO — November 11-15, 2013

This work was performed under the auspices of the U.S. Department of Energy under contracts DE-AC52-07NA27344 at LLNL and grants DE-FC02-05ER54813 at PSI Center (U. Wisc.) and DOE-FG02-12ER55115 (at Princeton U.)

ABSTRACT:

Resistive MHD simulations using NIMROD [1] simulate CHI discharges for NSTX startup plasmas [2]. Quantitative comparison with experiment ensures that the simulation physics includes a minimal physics set needed to extend the simulations to new experiments, e.g. NSTX-U. Important are time-varying vacuum magnetic field, ohmic heating, thermal transport, impurity radiation, and spatially-varying plasma parameters including density. Equilibria are compared with experimental injector currents, voltages and parameters including toroidal current, photographs of emitted light and measurements of midplane temperature profiles, radiation and surface heating. Initial results demonstrate that adjusting impurity radiation and cross-field transport yields temperatures and injected-current channel widths similar to experiment. These determine the plasma resistance, feeding back to the impedance on the injector power supply.

- [1] E. B. Hooper, et al., Phys. Plasmas 20, 092510 (2013)
 - F. Ebrahimi, et al., Phys. Plasmas <u>20</u>, 090702 (2013); also, invited talk this conference
- [2] R. Raman et al., Phys. Rev. Letters 104, 095003 (2010).

NSTX: The goal of this study is to model the NSTX discharge 118340, one of the first to show flux closure

See R. Raman, et al. Phys. Rev. Letters <u>97</u>, 175002 (2006)

Temperature measurements: Black — 8 ms Red — 10 ms Measured on a chord at the NSTX midplane

Discharge 119203 was similar to 118340

Boundary conditions for helicity injection

- Rate-of-change of toroidal flux equals V_{ini} V_{abs}
- Absorber voltage determined by requiring the total vacuum toroidal flux to be constant, corresponding to a constant I_{TF}
- Discharge (injector) current measured by the change in RB_{ϕ} just above the injector slot
- Toroidal flux carried in by ExB flow at the injector and out by ExB flow at the absorber
- Equating flows of vacuum toroidal flux yields

This generalizes the model used in HIT-II: R.A. Bayliss, C.R. Sovinec, and A.J. Redd, Phys. Plasmas 18, 094502 (2011).

Simulation — A narrow injection slot narrows the injected current, allowing easier flux-closure

A narrow footprint on the bottom was important in the experiment — guided the simulations

5

NSTX

Simulations without impurity radiation generated temperatures well above 25 eV whereas discharge 118340 had temperatures < 25 eV

Model radiation losses were added to the power balance:

The radiation term assumed oxygen in coronal equilibrium — based on calculations by Post, et al.*

No explicit terms were added to account for recycling, ionization, – the impurity fraction was treated as a parameter — adjusted to fit the experimental temperature Density was fit (approximately) to experiment — no explicit correction for Z_{eff} was used *D. E. Post, et al., Atomic data and Nuclear Data Tables 20, 397-439 (1977)

Simple models of impurity radiation – needed to match experimental T_e

In the experiment, impurity radiation was strongest near the return-current plate in the lower-inside corner of NSTX.

Simulations found that adjusting the impurity level to match the temperature at small radius yielded temperatures that were too low at large radius

A spatial distribution of impurity radiation was added:

$$\exp\left(-\left(r/r_{imp}\right)^2 - \left(z/z_{imp}\right)^2\right)$$

 $r_{imp} = 0.45$ m, $z_{imp} = 1.0$ m matched the experimental observations

Impurity pump-out following the end of injection was included as an exponential decay:

$$\exp(-(t-t_{inj})/t_{imp})$$

Results shown in later slides demonstrate that $t_{inj} \approx 8$ ms, $t_{imp} \approx 1$ ms fit the experiment temperature measurements well

Parameters used in the simulation that best fits the experiment

Parameter

Power supply capacitance and capacitor voltage Plasma density Thermal diffusivity (across B) Impurity fraction Impurity spatial dependence Impurity decay time

Simulation sensitivity

discharge current temperature peak and width of temperature temperature temperature spatial dep. temperature and tor. current variation after t_{ini}

The magnetic diffusivity and the thermal diffusivity along B are the Braginskii values. Other parameters for the simulation presented here include:

Power supply cap. and voltage	40 mF and 500 V
Plasma density	3x10 ¹⁸ m ⁻³
Thermal diffusivity	20 m²/s
Impurity fraction (Oxygen)	1.5 during injection; following inj. = 1.5 , 0, or decaying from 1.5
r _{imp}	0.45 m
Z _{imp}	1.0 m
timp	1.0 ms

The decay of toroidal current following injection is sensitive to the impurity fraction

- Injection voltage and current are insensitive to f(O), the impurity (oxygen) fraction (=1.5) during injection
- Simulated injection voltage (left) is greater than experiment (≈1200 V0 and injected current is greater (exp. ≈ 2 kA)

This may be due to plasma sheaths and ionization in the experiment

 Pump out of impurities is needed to match the time evolution of experimental toroidal current following injection

W

Experimental temperature at 8.0ms (during injection) exhibits shot-to-shot variation

The simulation lies within the experimental shot-to-shot variability

NSTX

10

Simulated poloidal flux and temperature during injection — consistent with experiment

Poloidal flux following injection vs impurity level — decay rate depends on impurity level

Simulation results for a decaying impurity level compare best with shape from fast camera images

W

12

Impurity fractions t = 10 ms, f(O) = 0.14t = 13 ms, f(O) = 0.01t = 15 ms, f(O) = 0.001

Temperature profile following injection vs impurity level — decay rate depends on impurity level

13

Temperature profile at 13 ms following injection vs impurity level — peak temperature drops to ≈ 15 eV

Summary — comparing simulation to experiment

- Including spatial and time dependence of impurities is required to match experiment
 - If impurities immediately drop to zero the temperature rises rapidly due to ohmic heating in the current channel
 - Maintaining the impurity level unchanged drops the temperature too far
 - o Toroidal current enclosed in the surfaces decays
 - o Surfaces disappear by 15 ms.
- The major difference is the discharge current-voltage relation
 - In simulations the injection current is higher than experiment and the injection voltage lower
 - Despite the difference, the flux bubble extends to the full height of NSTX in the simulation within the same time period as the experiment
 - The toroidal current peaks somewhat before the end of injection as observed in many experimental discharges.

