

Supported by

Office of FNERGY

Energy Investigation of Alfvén CULHAM CENTRE For a Low Carbon Ful eigenmode structure in NSTX and MAST

N.A. Crocker UCLA

J.C. Hillesheim, W.A. Peebles, E.D. Fredrickson, M. Podestà, K. Tritz, S. Kubota, H. Meyer and the NSTX & MAST Research Teams

55th Annual Meeting of the APS Div. of Plasma Physics November 11 – 15, 2013 **Denver, Colorado**

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res. Kiev loffe Inst TRINITI Chonbuk Natl U NFRI KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA. Frascati CEA. Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep

Overview

- Motivation: Alfvén eigenmodes play significant role in performance of spherical torus beam-heated plasmas
- Significant advances in high frequency AE identification facilitate investigation of enhanced core χ_e in NSTX beam-heat plasmas
 - identification via measured mode structure & local dispersion relations
 - AE radial structure measured in NSTX with array of reflectometers
 - Toroidal mode numbers and frequencies determined in NSTX using edge B-dot array
 - analysis shows combination of CAEs and GAEs
- UCLA & CCFE collaborated to implement Doppler Backscattering on MAST (see also NP8.00022)
- DBS sensitive to broad spectrum of AEs in MAST
- UCLA DBS at MAST facilitates investigation of many other physics topics in STs
 - Transport & Turbulence: Intrinsic Rotation (see also NP8.00022)
 - Transport & Turbulence: Geodesic Acoustic Modes
 - Boundary Physics: Edge Localized Modes

Motivation: Alfvén eigenmodes play significant role in performance of spherical torus beam-heated plasmas

- Beam-heated spherical torus plasmas feature rich spectrum of Alfvén eigenmodes
 - low frequency AEs (f < ~ 200 kHz): Toroidicity-induced (TAE) & Reversed shear (RSAE)
 - high frequency AEs (f > ~ 400 kHz):
 Compressional (CAE) & Global (GAE)
- Alfvén eigenmodes (AE) play critical role in many aspects of plasma performance

- Low frequency AEs cause fast-ion transport and loss:
 - change equilibrium sources (momentum, energy ...)
 - damage plasma facing components
- High frequency AE activity correlates with enhanced χ_e in core of H-mode beam heated plasmas (in NSTX)

D. Stutman et al., PRL 102 115002 (2009); K. Tritz, APS DPP 2010 Invited PI2.2

Significant advances in high frequency AE identification facilitate investigation of enhanced core χ_e in NSTX

- Identification of high frequency AEs (as CAE or GAE) necessary to understand role in enhanced core χ_e but, traditionally difficulty
- New analysis techniques facilitate identification using:
 - measured mode structures (via e.g. reflectometry),
 - measured f (frequency) and n (toroidal mode number) &
 - local dispersion relations:

CAE (compressional Alfvén): $\omega^2 = k^2 V_A^2$

GAE (shear Alfvén): $\omega^2 = k_{||}^2 V_A^2$

 Analysis shows high frequency AE spectrum in H-mode beam heated NSTX plasmas include CAEs and GAEs

Toroidal mode numbers and frequencies determined in NSTX using edge B-dot array

- Modes appear as peaks in δb spectrum
- *n* determined from δb measured by edge toroidal array of B-dot coils

– method: find *n* that minimizes χ^2 :

$$\chi^{2} \equiv 1 - \left| \sum_{\forall \phi} \delta b e^{-in\phi} \right|^{2} / \left(N_{\phi} \sum_{\forall \phi} |\delta b|^{2} \right)$$

where N_{ϕ} =10 is the number of coils.

 Smallest coil spacing is 10° ⇒ can distinguish |n| ≤ 18

AE radial structure measured in NSTX with array of reflectometers

- Microwaves reach cutoff at $\omega^2 = \omega_p^2 = e^2 n_0 / \varepsilon_0 m_e$

For large scale modes, cutoff displaces due to δn at cutoff ⇒
 "effective displacement" ξ ≡ δL/2 approximates cutoff displacement

Measurements reveal two kinds of high frequency AEs

- Structure measured with reflectometer array
- Toroidal mode number (*n*) measured with edge δb toroidal array
- Structures tend to fall in two categories suggesting two types of modes:
 (1) broad structure, peaking toward core
 - mostly *f* < ~ 600 *kHz*, *n* = -6 -8
 - (2) strongly core localized
 - mostly *f* > ~ 600 *kHz*, *n* = -3 -5

Broad structure (f < ~ 600 kHz) modes consistent with GAE dispersion relation

- GAEs are shear Alfvén:
 - peak at weak shear, e.g. at axis

$$f_{GAE} = \frac{k_{\parallel} v_A}{2\pi} + n f_{ROT}, \ k_{\parallel} \approx \frac{1}{R} \left| \frac{m}{q} - n \right|$$

- Strong q_0 variation \Rightarrow comparison with $f_{GAE}(t)$ stringent test of identity
 - Fit to $f_{GAE}(t) \Rightarrow m$
 - $f_{GAE}(t)$ sensitive to m/q if |m| >> 1
 - q_0 varies substantially (1.7 1.1) over t = 400 - 700 ms
- Modes with $f < \sim 600$ kHz: $f(t) \sim f_{GAE}(t)$ (bottom)
 - Modes with $f > \sim 600$ kHz: f(t) NOT consistent with $f_{GAE}(t)$ (middle)

Strongly core localized (f > ~ 600 kHz) modes consistent with CAE dispersion relation

- Compressional Alfvén waves propagate ONLY where: $\omega^2 > v_A^2 (n/R)^2$
- "Well" formed in *R*–*Z* plane

 $\omega^{2} = v_{A}^{2}k^{2} \Leftrightarrow \nabla_{R-Z}^{2}\zeta - V(R,Z)\zeta = 0$ $V(R,Z) = (n/R)^{2} - (\omega/v_{A})^{2}$

- toroidal Doppler shift must be taken into account

• CAE must fit inside "well"

- $V \Rightarrow R-Z$ "wavelength": $\lambda_{R-Z} \propto \left(-V(R,Z)\right)^{-\frac{1}{2}}$

- Well width ~ λ_{R-Z} for modes with $f > \sim 600$ kHz, n = -3 -5
 - Well width >> λ_{R-Z} for modes with f < ~ 600 kHz, n = -6 -8

600

frea (kHz)

400

500

700

800

-1.5

f = 633 kHz. n = -4

UCLA & CCFE collaborated to implement Doppler

UCLA

Backscattering on MAST for 2013 campaign

- DBS measures poloidal flow (i.e. $\delta v \cdot \nabla \psi x B$) yielding E_r and intermediate-k turbulence near cutoff
- UCLA worked with Dr. Jon Hillesheim of Culham Centre for Fusion Energy (see also NP8.00022)
- Q-band and V-band systems installed on MAST
 - 16 channels, 30 75 GHz; cutoffs @1 – 7 x 10¹³ cm⁻³ in O-mode
 - steerable for DBS or reflectometry
- Successful operation yielded promising results in many areas of physics

UCLA DBS Sensitive to Broad Spectrum of AEs in MAST

- DBS systems steerable for backscattering or reflectometry
 - Reflectometry: sensitive to AE δn (cutoff displacement)
 - Back-scattering: sensitive to AE modulation of Doppler shift:
 - $\delta v = \delta E x B_0 / B_0^2$
 - δn via "interferometer" effect
- DBS detects low (TAE) and high (CAE) frequency AEs in both modes
- Analysis of measurements will give mode structure
 - will compare with theory code simulation via "synthetic diagnostic"

UCLA DBS at MAST facilitates investigation of many physics topics in STs

Transport & Turbulence: Intrinsic Rotation

see also NP8.00022

- Intrinsic rotation potentially useful, but not fully understood
 - Rotation can aid stability and confinement but can be difficult to drive (*e.g.* in ITER)
- DBS reveals intrinsic rotation reversals:
 - Core poloidal flow in Ohmic plasmas observed to reverse (see e.g. right – $\Delta V \sim 10$ km/s with ~ 20 % change of $\langle n_e \rangle$)
 - first observation in low aspect ratio tokamaks
 - previously been observed in TCV
 [Bortolon, PRL 2006] and Alcator C-mod [Rice, PRL 2011].
 - thought to be related to collisionality dependence of turbulent momentum transport [e.g. Barnes, PRL 2013]

UCLA DBS at MAST facilitates investigation of many physics topics in STs

Transport & Turbulence: Geodesic Acoustic Modes

doø/dt

40

(KHz) 30

20

10

(Doppler shift modulation)

- GAMs play role in transition from L- to H-mode confinement
- f ~ 10 kHz poloidal flow modulation observed near last closed flux surface (LCFS) in Ohmic discharge.

 Possible GAM flow modulation also observed in beamheated discharges (not shown)

WNSTX-U

UCLA DBS at MAST facilitates investigation of many physics topics in STs

Boundary Physics: Edge Localized Modes

- ELMs significantly impact global particle confinement
- intermediate-k (k_θ ≈ 7 cm⁻¹)
 δn probed during pedestal scaling experiment
 - Experiment was CCFE/NSTX-U collaboration
- Variation of turbulent spectrum in pedestal observed during ELM cycle

Summary

- Motivation: Alfvén eigenmodes play significant role in performance of spherical torus beam-heated plasmas
- Significant advances in high frequency AE identification facilitate investigation of enhanced core χ_e in NSTX beam-heat plasmas
 - identification via measured mode structure & local dispersion relations
 - AE radial structure measured in NSTX with array of reflectometers
 - Toroidal mode numbers and frequencies determined in NSTX using edge B-dot array
 - analysis shows combination of CAEs and GAEs
- UCLA & CCFE collaborated to implement Doppler Backscattering on MAST (see also NP8.00022)
- DBS sensitive to broad spectrum of AEs in MAST
- UCLA DBS at MAST facilitates investigation of many other physics topics in STs
 - Transport & Turbulence: Intrinsic Rotation (see also NP8.00022)
 - Transport & Turbulence: Geodesic Acoustic Modes
 - Boundary Physics: Edge Localized Modes

Requests for electronic copies

A 16