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Abstract

A one-dimensional plasma toroidal rotation model and its controller
for a magnetically confined fusion device are developed in an effort
to assist the continuous extraction of fusion energy.

This study is based on the experimental measurements from the
National Spherical Torus Experiment (NSTX) and is aimed to capture
and sustain the rotation (toroidal) momentum transport in a stable
fashion and to achieve desirable plasma geometry inside the
tokamak .

The neutral beam injection (NBI) being fixed, the neoclassical
toroidal viscosity (NTV) will be considered in our model as the
actuator for the controller design.




Motivation and Outline

w Plasma rotation profile can favorably affect

®> Macroscopic stability (kinks ,RWMs, ELMs, tearing modes) for disruption
avoidance

= Stability of turbulent fluctuations (drift waves from ITG and ETG)

w> Thermal diffusivity through drift wave suppression

= Rotation profile control is an important operational goal for
NSTX-U to examine such physics

Outline

m Define a model for toroidal rotation and its actuators
w Build a simplified reduced order model and validate it

w Design a controller to track a desired profile




One dimensional toroidal momentum equation
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Toroidal momentum equation simplified into diffusion
equation with torques added
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One dimensional Simplified toroidal momentum equation
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Boundary conditions: Symmetry at plasma center and Dirichlet condition at the edge:

dw
dp

=0 and w|,_; =0

p=0

T'nrpr And I'nTv Will be our actuators for control purposes




Component 1: The momentum diffusivity X ¢
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X ¢ is calculated from TRANSP (Analysis)
The time-average values and their curve-fits are shown by the circles and the solid lines

respectively.




Component 2: Neutral Beam Injection Torque I'npr

TNBI(ta ,0) == TNBI(t)FNBI(,O)

Injecting high-speed neutral atoms into the center of the plasma

NSTX-U NBI system

Where:
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NBI torque from Model similar to the one from TRANSP analysis
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Component 3: Neoclassical Toroidal Viscosity Torque 1 'n7v

Tnrv(t,p) = KG(p) (R?) I*(t)w(t, p)
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NTV torque obtained from Model is peaked toward the edge

NSTX-U 3D coils (used to generate NTV)

p t [sec]

I'NTVis peaked toward the edge




Model of rotational frequency w captures main dynamics of TRANSP Run

W Momentum force balance equation ( )
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Bessel Spectral decomposition of ®

m Bessel functions (r = 10 states are used)

w(prt) = 20(t) + D 2 (t)Jo (a0,0p)

Where : n=1
JO Bessel function of the first kind
Reduced Order Model Full Nonlinear Model
(X, nis a root, numbered n N It
associated with the Bessel Function J() 1s YR
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Control Design strategy

Design a full state feedback controller + feedforward
(From the Reduced Order Model)

N

Combine to obtain a Compensator

(For the Full Nonlinear Model)
Design an Observer

(For the Full Linear Model)




Control Design Using One Actuator: Coil Current (NTV)

w Simplified Model with Fixed NBI

Ow oVt 9 [0V Ow
2 — ~ 2 TNBI — TNTV
(nm) (R*) — 5 (3,0) R [8p (nm)xe (R (Vp)? o +

Where : Twei(p) = Tugio(p) (Fixed in time)
Tty (t, p) = K G(p) <R2> I? (t) w(t, p) (Bilinearity)

w Linearization
w(t, p) = wo(p) +wi(t,p)
I*(t) = Iy + I (¢)
T (p) = Taio(p)

Where : (W is the steady state reached for a given NBI torque 1 g0 and current [
W1 and Il are the respective perturbations to the equilibriums W0 and IO




Reducing the system into a state space realization

w State Space Realization
P In Bessel Basis

11 = A, x1+ B, uq

w1 = Aw; + B uq
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y1 = Cwy y1 = Cr
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U1 is the control input variable which represents the current perturbation Il
Y1 is the output variable (sensor measurements)




Control Design Using One Actuator: Feedback law

@ Non-Zero Target state: another steady state

ma]= (6 8) [ [N ]

Where: 114 =4 — X9

Urd = Ud — UQ

td = Td —T0
w Control Law

U1 = U1d — K(le — Qild) = —K.’El -+ F’I“ld

Where: FF'= N, + KN,

w Design of K —» Linear Quadratic Regulator (LQR)




Control Design Using One Actuator: Coil Current (NTV)

w One Actuator : Coil current (scalar)

W 6 sensors: CHERS
(Charge exchange recombination spectroscopy)

w Need to have Desired profile below
Initial profile (Active Drag only)

25

Rotation profiles

T T
initial State
— — —desired profile
Linearization State
® measurement points

Feedback + Feedforward 4+ Observer
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7 = dim. of reduced state
Reduced linear model n = dim. of full state
RPY. » €R" : :
A &y = Apa, + Bru = = P = dim. of the input
K, | 1. Design a for the
Reduced controller reduced order model by using
Linear Quadratic Regulators (LQR)
2. Use combined with
a projector: new controller of .
the full linear model U R
u € RPL . x e R"
. ) x = Ax + Bu
3. Replace Full linear model by T
without TR Sy
changing the design of new H K, le— U* |e=——
controller Projector !

Full controller




Gain matrix Q for the LQR is investigated to determine the
impact on the controller

@
Minimize Quadratic Cost Function: [/ — / (xTQg; + uTRu) dt
t

Where :

Q >0 R >0 are symmetric, positive (semi-)definite weight matrices

K=-R'B'P

Where : P is a solution of the Algebraic Riccati Equation

PA+ A'P—-PBR 'B'P+Q =0
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Defining Q as the whole state gain yields a better controller

Closed Loop of the Nonlinear Model

Closed Loop of the Linear Model
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p = dim. of the input
Full Linear model q = dim. of the output
v ’LU_) .
weRP T = Ax + Bu+w y € R1 v = sensor noise
>

Yy = Cx+wv w = process noise
T Controller o TTTTTT Observer 777 E 1. Design observer for the
: K, 2= 45— Bou—Ly— er)(—:-' Imeanzeql model using a
: (_| : Kalman filter
1 I |
T Compensator ' L

2. Combine it with

controller to obtain a

3. Full linear model replaced by Full Nonlinear compensator

Model, without changing the design of the
compensator

4. Sense 6 points spread inside the tokamak
in the radial direction



Results: Output feedback control applied on the Full Nonlinear Model
successfully allow reaching the desired profile

< 10° LQC'i—t=0.0001:
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Conclusions

Developing of a simplified model of rotation
momentum that captures most of the dynamics

and validating it

Successfully built low order linear controller for
large order nonlinear system

Control rotation profile with only one actuator and
stabilizing it around a desired shape



This work will be used to control the plasma rotation
profile in NSTX-U

= Adding more actuators (NBI) and improving their design
will provide better control

= Methodology can be applied to real tokamak (NSTX-U)
through real time control

actuator control ] actuator P~ ]
inputs _ measurements inputs ’V{T measurements
oriented
model J s J
- ey
f plasma 4 f plasma ] ‘
[ controller L controller




