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Outline 
I.  Motivation:  
II.  Our Approach:  

§  Using surface science test stands to understand PFCs in tokamak 
environments 

III.  D Retention in Li Films on TZM 
§  What is the role of:  

§  Temperature? 
§  Oxidation? 

IV.  Conclusions:  
§  Two regimes:  

 (1) At low temperature, D retention is highest in Li2O films,  
 (2) At high temperature, D retention is highest in metallic Li films 
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Li films improve plasma performance and 
confinement time in LTX and NSTX 

Recent (2014) results indicate that new approach to liquid 
lithium walls increases Ohmic confinement by 10x 

! First operation of any tokamak with large area liquid lithium walls 
! 2 m2 of liquid lithium coated wall; 40% of plasma-facing surface 
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Liquid lithium 
walls ! Energy confinement with 

liquid lithium: 4-5 × 
ITER98P(y,2) scaling 
! Sufficient enhancement 
for a compact fusion core 

Confinement time increases 10x with liquid Li 

Low recycling with large-area Li walls 

NSTX 
R. Maingi et al., PRL 107, 145004, 2011. 
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Lithium Tokamak Experiment 
J. Schmitt, Invited talk Y12.3 
 
 

H factor increases with Li dose 

Li causes reduction in: 
§  Divertor recycling 
§  Edge neutral density 
§  Electron transport 

 



We don’t understand what happens at 
the surface 
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§ Why does Li improve plasma performance? 



We don’t understand what happens at 
the surface 
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§ Why does Li improve plasma performance? 

Working hypothesis: Deuterium retention  

Substrate 

Fuel (H/D) 

High D retention à Low D recycling à High edge 
temperature à Reduced temperature gradients  

§ Recycling Process: 



We don’t understand what happens at 
the surface 
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§ Why does Li improve plasma performance? 

Working hypothesis: Deuterium retention  

Substrate 

Fuel (H/D) 

High D retention à Low recycling à High edge 
temperature à Reduced temperature gradients  

§ Recycling Process: 

1.  Through volumetric 
conversion of Li to LiD 
(Baldwin & Doerner) 

 
2. Through complexes that 

involve oxygen      
(Krstic, Allain, Taylor) 

How is D retained in Li? 



Bare SS Walls 
Solid Li coating 
Li coating after 36h 
Li coating after 108h 

H pumping fraction is correlated with wall 
temperature and composition on LTX 

§ Hot, oxidized Li: lower H pumping 
§ Cold, oxidized Li: better H 

pumping  
 
§ With e-beam system:  

When Li is metallic, hot shells 
give improved plasma 
performance  
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J.C. Schmitt et al., JNM 438, S1096 (2013) 



Bare SS Walls 
Solid Li coating 
Li coating after 36h 
Li coating after 108h 

H pumping fraction is correlated with wall 
temperature and composition on LTX 

Key Question:  
How is the pumping ability of Li 
affected by temperature & oxidation? 
 

Our goal: To elucidate this data under 
carefully controlled conditions.  
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J.C. Schmitt et al., JNM 438, S1096 (2013) 

§ Hot, oxidized Li: lower H pumping 
§ Cold, oxidized Li: better H 

pumping  
 
§ With e-beam system:  

When Li is metallic, hot shells 
give improved plasma 
performance  



Surface science provides fundamental information 
needed to understand plasma-wall interactions 

Key variables affecting chemistry at surface: 
§  Pressure (residual gases) 
§  Temperature (plasma heating) 
§  Composition (Mo, Li, D, etc.) 

Lab-based surface science experiments enable 
independent control of all variables 

…something we cannot achieve in a   
tokamak or linear plasma device!  

Isolate effects of:   
§  Chemistry 
§  Incident particle fluxes and energies 
§  Substrate temperature 
§  Surface composition 
§  Morphology  

Start simple, i.e. single effects, and add 
complexity to bridge gap between model 
systems and tokamak environment 

Test stand instrumentation in the  
Surface Science & Technology Lab  

at PPPL 10 /30!



Our capabilities span from the simple 
to the complex 

Mo(110) crystal 

Simple Model 
Experiments !

More Complex 
Systems!

Monoenergetic ion beam  
(Image of He ions on phosphor screen) 

TZM Mo alloy 

ECR plasma source  

Grain boundaries 
Alloying elements: Ti, Zr, C 
Surface roughness 

Multiple species: H+, H2
+, H3

+ 
Increased flux: 1012 à 1016 cm-2 s-1 

Atoms, ions, or atoms + ions 
H+ 

H2
+ 

H3
+ 

11 /30!



Mo(110) crystal 

Simple Model 
Experiments !

More Complex 
Systems!

Monoenergetic ion beam  
(Image of He ions on phosphor screen) 

TZM Mo alloy 

ECR plasma source  

Grain boundaries 
Alloying elements: Ti, Zr, C 
Surface roughness 

Multiple species: H+, H2
+, H3

+ 
Increased flux: 1012 à 1016 cm-2 s-1 

Atoms, ions, or atoms + ions 
H+ 

H2
+ 

H3
+ 
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We will focus on more complexity in 
this talk 



Temperature programmed desorption gives desorption 
energy, rate constants, & quantity desorbed 
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Sample 

1 cm 

Temperature Programmed Desorption (TPD) Technique: 
§  Linear temperature ramp applied to sample 
§  Partial pressure of desorbing species measured 
§  Temperature of desorption peak relates to binding energy  
§  Area under pressure vs. time curve proportional to number of atoms desorbed 

T vs. time 
readout!

0-10 V signal!
Thermocouple (TC)!

Sample!

Vacuum Chamber Wall!

Desorbed 
species!

DC Power 
Supply !

TC 
Readout/ 
Controller!

QMS 
Controller! Li partial 

pressure !
vs. time!

Line of Sight 
Quadrupole 
Mass Spec 

(QMS)!



Temperature programmed desorption gives desorption 
energy, rate constants, & quantity desorbed 
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Sample 

1 cm 

T vs. time 
readout!

0-10 V signal!
Thermocouple (TC)!

Sample!

Vacuum Chamber Wall!

Desorbed 
species!

DC Power 
Supply !

TC 
Readout/ 
Controller!

QMS 
Controller! Li partial 

pressure !
vs. time!

Line of Sight 
Quadrupole 
Mass Spec 

(QMS)!

Area under pressure vs. time curve à # of atoms desorbed 

TPD can be used to measure D retention! 



TPD shows that Li is stable on TZM  
up to 1000 K 

C.H. Skinner et al., JNM 438, S647 (2013) 
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Substrate 

Lithium 

§  Submonolayer Li film on 
TZM stable up to 1000 K 

§  Represents Li-Mo bonding 
§  Desorption energy ~2.7 eV 

Submonolayer Li Film 



Area under Li TPD curve increases with 
Li dose 

C.H. Skinner et al., JNM 438, S647 (2013) 
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Substrate 

Lithium 

§  Area under Li TPD curve 
increases with Li dose 

§  Dipole interactions lower the 
desorption energy  

§  Desorption energy of 
monolayer ~2 eV  

§  Ed is a function of coverage 

Monolayer 
Submonolayer 



Thick Li layers evaporate at 500 K 

C.H. Skinner et al., JNM 438, S647 (2013) 
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Substrate 

Lithium 

§  Thick Li films (multilayer) 
evaporate at 500 K 

§  Multilayer film represents 
Li-Li bonding 

§  Cohesive energy of metallic 
Li ~1.7 eV 

 

Complete  
Monolayer 

Submonolayer 

Multilayer 



Li film on TZM is exposed to D plasma 
from ECR source 
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Sample 

Quad-
rupole 
Mass 
Spec 

Auger 
Electron 
Spectro- 
 meter 

 
Vacuum 
Chamber 

ECR Plasma Source!

Experimental Parameters:  
 
Sample:  

TZM Mo Alloy (99% Mo, 0.5% Ti, 0.08% Zr) 
Li film thickness: 5 monolayers (ML) 
Wall temperature: 315–460 K (42–187°C)  

 
Chamber Pressure: 2 x 10-9 Torr 
 
D2

+ ion energy: 250 eV per D2
+ ion  

D2
+ ion flux: of 1 x 1013 cm-2 s-1 

Exposure time: 100 s 
Fluence: 2 x 1015 D cm-2  
D2 exposure: 5 x 10-5 Torr for 100 s (5000 L) 



D retained as LiD after exposure to D2
+ 

from ECR plasma source 
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D retained as LiD after exposure to D2
+ 

from ECR plasma source 
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D retained as LiD after exposure to D2
+ 

from ECR plasma source 
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§  New Li peak observed near 650 K 
§  Peak corresponds to LiD 

decomposition 



D retention in ultrathin Li films decreases 
with substrate temperature from 315-460 K 
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D retention in ultrathin Li films decreases 
with substrate temperature from 315-460 K 
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D retention in ultrathin Li films decreases 
with substrate temperature from 315-460 K 

Increasing 
substrate 
base 
temperature 
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D retention in ultrathin metallic Li drops 
exponentially with temperature up to 460 K 



D2
+ is 104 times more effective than D2 

gas at forming LiD 
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What is the effect of D2 gas?  
§  Operate experiment without plasma 

Ion fluence:  
2x1015 D+ ions cm-2  
~ 2 monolayers 
 
D2 gas exposure 
5x103 L (1 L = 10-6 Torr-s)  
~ 5x103 monolayers 
 
~2000x as much D2 as D+ 

But we make 10x less LiD 

D2
+ ions are 104 times more effective 

than D2 gas at forming LiD!  
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D is implanted in uncoated TZM 

Li2O retains more D, but film is less 
thermally stable than LiD 
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D is implanted in uncoated TZM 

4 to 5x more D2 retained in Li2O 
than TZM 

Li2O retains more D, but film is less 
thermally stable than LiD 



2x less D2 retained in metallic Li, 
but more thermally stable!  
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D is implanted in uncoated TZM 

4 to 5x more D2 retained in Li2O 
than TZM 

Li2O retains more D, but film is less 
thermally stable than LiD 



2x less D2 retained in metallic Li, 
but more thermally stable!  
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D is implanted in uncoated TZM 

4 to 5x more D2 retained in Li2O 
than TZM 

Li2O retains more D, but film is less 
thermally stable than LiD 

T < 130°C, Li2O is best for D 
retention 
T > 130°C, Metallic Li is 
needed for D retention 



Conclusions 
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Oxidation improves D retention in Li films on TZM below 400 K 
§ D retention in Li2O films is 2x higher than in metallic Li at 400 K 
§ D retained in Li2O films is released at 400 K 
§ At elevated temperatures, metallic Li film is needed to retain D  
 

D retention in metallic Li films drops exponentially up to 460 K 
§ D2

+ are 105x more effective than D2 gas at forming LiD 
§ Oxygen inhibits LiD formation at the surface 

T < 130°C, Li2O is best for D retention 
T > 130°C, Metallic Li is needed for D retention 

Results are consistent with LTX 
§ Li does not pump D2 well 
§ Bare metal acts as particle source 
§ Cold Li2O films will retain D 


