The Effects of Temperature and Oxidation on D Retention in Solid and Liquid Li Films on Molybdenum Plasma-Facing Components

Angela M. Capece

56th Annual Meeting of the APS Division of Plasma Physics New Orleans, LA

October 31, 2014

Acknowledgements

Co-authors:

- John Roszell, Princeton University
- Charles Skinner, PPPL
- Bruce Koel, Princeton University

Contributors:

- Bob Kaita, PPPL
- Mike Jaworski, PPPL
- John Schmitt, PPPL
- Dick Majeski, PPPL

Funding:

 DOE (FES), PPPL LDRD, Fundamental Studies of Deuterium Retention in Solid and Liquid Metals

Outline

- I. Motivation:
- II. Our Approach:
 - Using surface science test stands to understand PFCs in tokamak environments
- III. D Retention in Li Films on TZM
 - What is the role of:
 - Temperature?
 - Oxidation?
- IV. Conclusions:
 - Two regimes:
 - (1) At low temperature, D retention is highest in Li_2O films,
 - (2) At high temperature, D retention is highest in metallic Li films

Li films improve plasma performance and confinement time in LTX and NSTX

NSTX

R. Maingi et al., PRL 107, 145004, 2011.

Lithium Tokamak Experiment

J. Schmitt, Invited talk Y12.3

Confinement time increases 10x with liquid Li Low recycling with large-area Li walls

We don't understand what happens at the surface

Why does Li improve plasma performance?

We don't understand what happens at the surface

Why does Li improve plasma performance?

Working hypothesis: Deuterium retention

High D retention \rightarrow Low D recycling \rightarrow High edge temperature \rightarrow Reduced temperature gradients

Recycling Process:

We don't understand what happens at the surface

Why does Li improve plasma performance?

Working hypothesis: Deuterium retention

High D retention \rightarrow Low recycling \rightarrow High edge temperature \rightarrow Reduced temperature gradients

Recycling Process:

How is D retained in Li?

- 1. Through volumetric conversion of Li to LiD (Baldwin & Doerner)
- 2. Through complexes that involve oxygen *(Krstic, Allain, Taylor)*

H pumping fraction is correlated with wall temperature and composition on LTX

- Cold, oxidized Li: <u>better H</u> <u>pumping</u>
- With e-beam system: When Li is metallic, hot shells give improved plasma performance

J.C. Schmitt et al., JNM 438, S1096 (2013)

H pumping fraction is correlated with wall temperature and composition on LTX

Surface science provides fundamental information needed to understand plasma-wall interactions

Test stand instrumentation in the Surface Science & Technology Lab at PPPL

Key variables affecting chemistry at surface:

- Pressure (residual gases)
- Temperature (plasma heating)
- Composition (Mo, Li, D, etc.)

Lab-based surface science experiments enable independent control of all variables

...something we cannot achieve in a tokamak or linear plasma device!

Isolate effects of:

- Chemistry
- Incident particle fluxes and energies
- Substrate temperature
- Surface composition
- Morphology

Start simple, i.e. single effects, and add complexity to bridge gap between model systems and tokamak environment

Our capabilities span from the simple to the complex

Simple Model Experiments

Mo(110) crystal

Grain boundaries Alloying elements: Ti, Zr, C Surface roughness

More Complex Systems

TZM Mo alloy

Multiple species: H⁺, H₂⁺, H₃⁺ Increased flux: $10^{12} \rightarrow 10^{16}$ cm⁻² s⁻¹ Atoms, ions, or atoms + ions

ECR plasma source

Monoenergetic ion beam (Image of He ions on phosphor screen)

We will focus on more complexity in this talk

Simple Model Experiments

Mo(110) crystal

More Complex Systems

TZM Mo alloy

Multiple species: H⁺, H₂⁺, H₃⁺ Increased flux: $10^{12} \rightarrow 10^{16}$ cm⁻² s⁻¹ Atoms, ions, or atoms + ions

Monoenergetic ion beam (Image of He ions on phosphor screen)

Temperature programmed desorption gives desorption energy, rate constants, & quantity desorbed

Vacuum Chamber Wall

Temperature Programmed Desorption (TPD) Technique:

- Linear temperature ramp applied to sample
- Partial pressure of desorbing species measured
- Temperature of desorption peak relates to binding energy
- Area under pressure vs. time curve proportional to number of atoms desorbed

Temperature programmed desorption gives desorption energy, rate constants, & quantity desorbed

Area under pressure vs. time curve \rightarrow # of atoms desorbed

TPD can be used to measure D retention!

Area under Li TPD curve increases with Li dose

Lithium —

Substrate

- Area under Li TPD curve increases with Li dose
- Dipole interactions lower the desorption energy
- Desorption energy of monolayer ~2 eV
- E_d is a function of coverage

C.H. Skinner et al., JNM 438, S647 (2013)

Thick Li layers evaporate at 500 K

_i Signal [a.u.]

Lithium —

Substrate

- Thick Li films (multilayer) evaporate at 500 K
- Multilayer film represents Li-Li bonding
- Cohesive energy of metallic Li~1.7 eV

Li film on TZM is exposed to D plasma from ECR source

Experimental Parameters:

Sample:

TZM Mo Alloy (99% Mo, 0.5% Ti, 0.08% Zr) Li film thickness: 5 monolayers (ML) Wall temperature: 315–460 K (42–187°C)

Chamber Pressure: 2 x 10⁻⁹ Torr

 D_2^+ ion energy: 250 eV per D_2^+ ion D_2^+ ion flux: of 1 x 10¹³ cm⁻² s⁻¹ Exposure time: 100 s Fluence: 2 x 10¹⁵ D cm⁻² D_2^- exposure: 5 x 10⁻⁵ Torr for 100 s (5000 L)

ECR Plasma Source

D retained as LiD after exposure to D_2^+ from ECR plasma source

D retained as LiD after exposure to D_2^+ from ECR plasma source

D retained as LiD after exposure to D_2^+ from ECR plasma source

D retention in ultrathin Li films decreases with substrate temperature from 315-460 K

D retention in ultrathin Li films decreases with substrate temperature from 315-460 K

D retention in ultrathin Li films decreases with substrate temperature from 315-460 K

D retention in ultrathin metallic Li drops exponentially with temperature up to 460 K

D_2^+ is 10⁴ times more effective than D_2^- gas at forming LiD

What is the effect of D₂ gas?

Operate experiment without plasma

2x less D₂ retained in metallic Li, but more thermally stable!

4 to 5x more D_2 retained in Li_2O than TZM

D is implanted in uncoated TZM

T < 130°C, Li₂O is best for D retention
T > 130°C, Metallic Li is needed for D retention
2x less D₂ retained in metallic Li, but more thermally stable!
4 to 5x more D₂ retained in Li₂O than TZM
D is implanted in uncoated TZM

Conclusions

T < 130°C, Li_2O is best for D retention

T > 130°C, Metallic Li is needed for D retention

D retention in metallic Li films drops exponentially up to 460 K

- D₂⁺ are 10⁵x more effective than D₂ gas at forming LiD
- Oxygen inhibits LiD formation at the surface

Oxidation improves D retention in Li films on TZM below 400 K

- D retention in Li₂O films is 2x higher than in metallic Li at 400 K
- D retained in Li₂O films is released at 400 K
- At elevated temperatures, metallic Li film is needed to retain D

Results are consistent with LTX

- Li does not pump D2 well
- Bare metal acts as particle source
- Cold Li₂O films will retain D