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General perturbed equilibria
in the state of minimum potential energy

« Minimization of perturbed potential energy with non-ideal non-axisymmetric
forces provides more general form of perturbed equilibria

In zero frequency limit, perturbed potential energy with any perturbing force f,;

6W=—%fg-(éfxI§+}xél§—§5p—fp)dx3

Minimum state of dW is equivalent to general perturbed equilibrium;
F=06jxB+jxoB-Vop-f, =0
Boozer, Phys. Plasmas 6 831 (1999), for isotropic pressure
Rosenbluth and Rostocker, Phys. Fluids 2 23 (1959), for anisotropic pressure

Generally forces can come from kinetic anisotropic pressure, rotational force, and other sources;

fp =§°6ﬁ+6(p17-§\7)+fa

* Note self-adjointness of force operator or energy principle (See additional
discussion later) is necessary for determining stability boundary, but not
required for problem of perturbed equlibria
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External energy and toroidal torque
supporting general perturbed equilibria

» Total energy of system must be conserved, and external currents must
support perturbed energy in plasma

Integration by parts separates energy from plasma and external currents;

1 02 = 1 - =
oW =—— Fdx’ == [87-0Adx> =0
3 ) & R =g ]

» Total toroidal torque of system must also be conserved in tokamaks

r | f]d (685, (6B i) da =0

* Both energy and torque are needed to couple to external coil currents

Using surface current potential on a control surface 6j=Koé(wp-v,), K=VixVy

—fg-lj"d)f = gﬁK(éé'ﬁ)da
p

S22 7o - 25 (o8-

Boozer, Phys. Rev. Lett. 86 5059 (2001)
Park et al., Phys. Plasmas 16 082512 (2009)
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Equivalence in theory of kinetic energy
and neoclassical toroidal viscous (NTV) torque

» Kinetic potential energy includes anisotropic pressure tensor

—

f =V-dIl

p

Anisotropic pressure tensor with non-adiabatic part of isotropic pressure;

Ol = 5pj +(0p, — 5pL)l;I;
1 = . Y . 2 3
SW, =5f§ (V cSH)dx
» Associated toroidal torque is neoclassical toroidal viscous (NTV) torque

5.0

J@

Tyry = f dx’

 In tokamaks, equivalent theory has been used for kinetic energy and NTV
Anti-Hermitian dW,, with a complex displacement for a fixed toroidal mode n is proportional to NTV;

T

vy =2n1m[OW,] Parketal, Phys. Plasmas 18 110702 (2011)
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Formulation for kinetic potential energy

 Kinetic potential energy includes anisotropic pressure tensor

1 p= /= - 1 OB = =
oW, =5f§-(V'5H)dx3 =_5f (5p”—5pl)B—L+5p”(V'§L)}dX3

0

*On Boozer’s coordinates: W, = % f

(Op, +c3pl)53£]dx3

0

With anisotropic pressure  Op, = f dv’Mv;8f, Sp, f av’ —Mv2<5 f

(875f)

Orbit averaging gives

Variation in the action oJ = E gﬁ d ﬁ—

wy, B,

%8, =_§"§l_§¢"zo

0

With Lagrangian variation in the field strength

Park et al., Phys. Plasmas 18 110702 (2011)

» Perturbed distribution function is calculated with orbit averaging for

. _f wafo=
b Vof+v aa+ ” C[of]
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Kinetic perturbed equilibria with semi-analytic
formulation and effective Krook collisional operator

« With Krook collisional operator, kinetic potential energy is given by

W, =

) g Ea)

nw, /e
Resonant operator R = b

n(w, +wy) - (L -onq)w, —iv,,

Logan et al., Phys. Plasmas 20 122507 (2013)
» Kinetic potential energy depends quadratically on action variation

 Action variation spatially depends on two components of displacements

Using complex representation for a fixed n;

le Er—nw im%-ing § Va Er—-a im@-ing
Action matrix with displacement matrix vector; 8J = W =0 W = 4 WZEO‘ (an =9E" / 81/})
27°
oW, =

WEfdl/)dEduRe[R]
ol

=0 = 7 =a\" (v =0 T = i =
— (WX; T+ W,EY +WZ:.“) (WX: ”’+WY:.”’+WZ:“)
vy,
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Modified kinetic potential energy in DCON

« With Krook collisional operator, kinetic potential energy is given by

A2 Zar§ Da e (B 2oy 2w\, (B B, 5

o

[V
[

w)*

+E"D EY +EVE BV 4BV EIEY + BV H K?f”]

« This is exactly the form of ideal potential energy in DCON, but A-H matrices are

modified with kinetic effects

BebyeBo=5+Y dedHRe[R](%) 7w,
ol
PR - of \ - -
C=C,+C,=C, + dEduRe|R || —— |W;
1Lk 1 ;f u [ ](aw) z Wy where
B+ By =D5,+3 dedMRe[R](gi) A
ol
E=E+E=E+> [ dEduRe[R](j—w)W;WY
ol

Glasser and Chance, Bull. Am. Phys. Soc. 42 1848 (1997)

X =Wu5€
v, = AM(3§+Y -2W,S
7, =, (35 + 7) -2,

—Pfei(m—nq)ﬁ
“4nd T 2E-2uB°

L E—/B L, i(m=-nq)d
I8 (€, %) = D(82v + 27|

JB’ (§ 1) _ E()“(éaw +VEY 4 Zéa)eimﬁ—imp
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Modified Euler-Lagrange equation for force balance

« Minimization of ideal and kinetic potential energy by variational methods yields
modified Euler-Lagrange equation (with modified F-G matrices)

9=V .- o el
Radial displacement : 9 [po= | g —(K*E”’+GE"’)=O
ay\ oy

Tangential displacement : 2 = —A"" (Egaw + C’@”)

» This system of differential equation becomes singular when det(F) vanishes

 |deal case: det(F) vanishes at the resonant
surface g=m/n

1.048=2

F=QFQ  *(0,, =(m-ng?,,)

fx
o o

 Kinetic case: g=m/n resonant surface can
split, or disappear, or kinetically driven

0.4f

m =3
resonant surface may possibly occur 0.2 — k-0.00+00
- - o\t o - - - —— k=1.0e+02
F = (Q—P) Fe (Q—P)+FR 0-95:876 0.878 0.880 0.882 0.884

Y
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Kinetic modification of global eigenfunctions

Kinetic potential energy is mostly stabilizing, i.e. requiring higher energy for
perturbations, and modify global structure smoothly

Kinetic modification can be critical when plasma is beyond stability limit
See Wang’s work with MARS-K (T1.00003 on Thursday)

DIII-D high B\~2.5 target (still below no-wall limit)

n=3 modes

n=1 modes
— 71 1 T 1T T 0.6

0.8

" Ideal ' - Ideal
Kinetic ] - Kinetic
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Kinetic modification of eigenfunctions
near resonant surfaces

 Kinetic effects can strongly modify solution behaviors near resonance surfaces
— Can remove ideal resonant surfaces when stabilizing
— Can split ideal resonant surfaces when destabilizing

 Kinetic resonant surfaces are expected to have a logarithmic and integrable
singularity, but it will be numerically more stable if jumped across

. (nm)=(1,2) modes _{nm)=(1,2) modes

L Ideal-0.1*Kinetic

[ Ideal

L Ideal+0.1”*Kinetic
| Ideal+Kinetic

. Ideal+107Kinetic

0.8

&

PRI S N S S S T [ S S S T N S SR SR S S PR TR
0.665 0.670 0.675 0.680 0.685
Py

0.690
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Construction of energy and torque matrix

 |deal and kinetic potential energy can be integrated with Euler-Lagrange equation
and can be combined with vacuum energy, yielding energy response matrix
oW, = 2]‘172fd1/}[é6wF Wy EVKEY +EVKTEY +§”’+(§§w]+5WV
= 2n2fdwi[§'“ (F’E‘W +i€§”’)]+5w == (W WV)EZ = EIS*(WP“’ +W;")ci>
*@ : Normal magnetic field

Toroidal torque produced by kinetic perturbed equilibrium can also be represented
by torque response matrix using solutions of Euler-Lagrange equation

T, = dna® [ ay T, (won,) AT, (won,)+ Ty (w0, B, (w9, 4+

- ] — . ~
A = EdedM Im[R](ﬁ) W, T, (p.p,) :Kemel detemining =“(y) givenaZ¥(y,)
using solutions of Euler-Lagrange equation

B, = [dEdu Im[R](%) VW,

October 27, 2014
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Construction of plasma response matrix
for free boundary perturbed equilibria

« Plasma response can be determined using energy and torque response matrix

Plasma inductance : A =2 (qu’ + qu’) L7
n

Plasma response (Permeability) : P= Klt;

External field @ to Total field ® : ® = PD*

» Plasma response to rotating field can also be determined by combining eddy
currents at the wall (e.g. VALEN3D code can provide required matrices)

External field ®* to Total field @ at the wall : ®, = SP*

Park et al., Phys. Plasmas 16 082512 (2009)

Wall resistivity : R,
Plasma surface inductance : L,
Wall surface inductance : L,

Plasma-Wall coupling : M .

' NSTX-U
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Kinetic perturbed equilibria with first-principle code

» Kinetic energy and toroidal torque can be computed by first-principle code, such as
POCA particle simulation code based on Boozer formulation

« Computations have shown quadratic dependency on variation in the field strength

_— _—

Assume code matrix W¢ (1/;) = (6}? ) WKC (1//) 0B,

0

and (W,f)+ =W¢

0

» Matrix can be constructed using computational results, from diagonal to off-
diagonal bands in sequence
— Individual Fourier components giving diagonal band
— 2-component applications giving the first off-diagonal band since the diagonal band is known
— k-component applications giving the (k-1)-th off-diagonal band repeatedly

» In Boozer coordinates, A-H matrices for energy and torque can be calculated with
oW, = fdz/;[f@w +(Y +S)ZY +(Z+74:)§0‘]+ we (w)[f@a”’ +(Y +S)ZV +(Z+T)§“]
« Code matrix is diagonal-dominant and strongly banded, enabling truncation with

only a few bands and thus efficient computation
See Kim’s work with POCA (BP8.00027 in this session)
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Perturbed equilibria with arbitrary force

« An arbitrary small force in the plasma changes potential energy
5W=-%fé-(ajxéﬁxaé-%p-ﬁ(zp,ﬁ,q)))df
. Boozer et al., Phys. Plasmas 13 102501 (2006)
« Parallel force balance gives
]_iz.EO =Bo'§(2§'§p+7’§'§)
* In complex representation, parallel force balance in general leads to
—fdﬁquof E=X=Z" 4+ Y2V + ZE°
« Minimization of potential energy yields an inhomogeneous E-L equation

0 (0B, K:) (k2> 1 Gav)-5 - 2R e
i

oy oY Y where
B¢ = A (Ei‘w +CE¥ + Z)

C/:i ’:m
'"<¢ ><¢
Ni N¢

-B
-C*

« With a particular solution, Hermitian part of inductance matrix can be calculated by

virtual casing and finding surface currents driving perturbation
Park et al., Phys. Plasmas 14 052110 (2007)
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On kinetic energy principle
in low frequency and collisionless limit

* In low frequency limit, kinetic energy principle provides necessary and
sufficient condition for stability

1 o % — had 3
W, =W, —Efg (V-1T)dx
With collisionless trapped patrticles, lower and upper bound of stability;
oW, = oW,, =W,

Rosenbluth and Rostocker, Phys. Fluids 2 23 (1959)

» Self-adjointness with kinetic energy operator is manifest by

nw, /e f, ST'5]

lw, —n(w, +wy) Iy,

1
W =W, + [dy, d(pdEdyg

 Kinetic energy principle relies on ‘collisionless’ condition, in which

Imaginary term in kinetic energy seemingly disappears
Kruskal and Oberman, Phys. Fluids 1 275 (1958)

Taylor and Hastie, Phys. Fluids 8 323 (1965)
Antonsen and Lee, Phys. Fluids 25 132 (1982)

Van Dam and Rosenbluth, Phys. Fluids 25 1349 (1982)

For extended kinetic energy principle, see
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Finite energy dissipation in collisionless limit

« However, imaginary part of kinetic energy is finite in collisionless limit

lim ! — = imd(lw, - n(w, +wy))
=0 LW, — (W, +Wp) + iV,

« Contributions from these resonant particles are in fact most important

2.0

w. +w, =0  Superbanana plateau resonance (SBP)
Shaing et al., Plasma Phys. Control. Fusion 51 035009 (2009)

15F

{w, —nw, —0 Bounce-harmonic resonance (BH)
Park et al., Phys. Rev. Lett. 102 065002 (2009)

wg /W
-
o

Example with NSTX-U target with PENT
Im(dW) increases in low density and low —> .|
collisional limit and saturates to plateau SBP

0.0

* In truly collisionless limit, perturbation theory e e
fails and plasma enters superbanana regime,
which predicts no imaginary term : This limit is mostly unrealistic

 Kinetic energy principle should be revisited for realistic application
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Summary and Discussion

Theory and numerical implementation of kinetic perturbed equilibria were
successfully formulated and preliminary tests show expected modifications
— Kinetic singular surfaces are logarithmic and integrable, but better be found in advance
to cross the surfaces with (continuous) jump conditions
Kinetic perturbed equilibrium solutions, with semi-analytic formulation, will be under
benchmark with MARS-K without fluid rotation

Plasma response matrix can be constructed from energy and torque matrix, which
will allow free boundary perturbed equilibrium

Arbitrary force can be included by solving inhomogeneous Euler-Lagrange
equation, and response matrix can be determined by virtual casing method

Torque consistent perturbed equilibrium : Presented treatment is consistent with
anisotropic pressure tensor, but not consistent with torque inside plasma

Stability determination with kinetic energy principle : Imaginary contributions exist
by resonance even in collisionless limit, like Landau damping, and accordingly
Kinetic energy principle should be revisited

However, slowly varying instability, such as RWM, can be calculated by coupling
energy and torque to external currents at the wall, by ignoring inertia energy
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