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Abstract
The motional Stark effect with laser-induced fluorescence diagnostic 
(MSE-LIF) was installed on NSTX  during the 2011 run year. The MSE-LIF 
will enable radially resolved measurements of the magnetic field pitch 
angle and magnitude, both of which can be used to constrain plasma 
equilibrium reconstructions.  A diagnostic neutral beam with low axial 
energy spread, low divergence, and high reliability has been developed. It 
operates routinely at 35 kV and 40 mA.  A laser has been developed with 
high power (~10 W) and optimal linewidth matched to the energy spread 
of the neutral beam (~6 GHz). The laser wavelength is near 651 nm for a 
match to the Doppler-shifted Balmer-alpha transition in the beam neutrals. 
The unique high-power, moderate linewidth laser system utilizes a 19 
emitter diode laser bar and feedback from a volume Bragg grating for line 
width narrowing. A magnetic shield protects the ion source from the NSTX 
stray fields. Initial data in a gas-filled torus and low magnetic fields was 
taken on NSTX. Several improvements have been made to the system 
during the NSTX upgrade, including adding more spatial channels and 
several laser improvements.
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Overview

• Fundamentals of MSE and motivation for MSE-LIF: 
Magnetic field magnitude and pitch angle 
measurements

• Foundation for MSE-LIF: Low-Field, neutral gas 
measurements

• MSE-LIF at intermediate field in plasma: Challenges 
and responses

• Laser development: 651 nm, 10 W, 6 GHz linewidth 

• Installation and initial operation on National 
Spherical Torus Experiment (NSTX)
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Motional Stark Effect Diagnostic
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Neutral 
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Sightline
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Emission from hydrogenic neutral 
beam split and polarized due to 
Stark effect from           electric field

Balmer alpha (n=3 -> n=2) 
transition observed. ∆m=0 (π), 
∆m=±1 (σ).

Pitch angle determined by 
polarimetry on single line of 
spectrum

Radial profile of pitch angle used 
with external magnetics to 
reconstruct equilibrium

Sensitive to radial electric fields

v⃗ × B⃗
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Advantages of MSE-LIF system:

Field Range: 

Measurement of |B| as well as pitch angle:

Sensitivity to Er:

Ease of Calibration:

MSE-LIF uses laser to excite H-alpha transition in diagnostic neutral beam

MSE measurements from ~0.001 T and up. Traditional MSE limited by 
overlap of spectral lines as field decreases

Measure |B|,  use to compute pressure, current profiles

Can use MSE-LIF in conjunction with additional MSE system to 
determine Er

Insensitive to polarization effects in optics
Operational Flexibility:

Use of diagnostic neutral beam enables MSE measurements in absence of 
heating beam, for start-up, RF studies, or in small machines
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 LIF Scheme
Excite n=2 to n=3 transition 
in Hydrogen: Doppler shifted 
to 651 nm

Observe same transition: 
Emission Doppler shifted to 
near 660 nm

Laser wavelength match to 
beam voltage

Laser polarization match to 
Stark transition

Collisional

excitation

n = 3

n = 2

n = 1

e-

Spontaneous 

emission

Laser-induced

excitation

Quenching

Stimulated 

emission

Recombination/

Ionization

Excite @ 651nm Observe @ 660 nm
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Pitch Angle Measurement

Laser collinear with neutral beam for Doppler match everywhere.

Polarization information set by input laser: no need for polarimetry in 
detection system

Optional radial beam injection eliminates pitch angle sensitivity to Er 

Diagnostic 
Neutral Beam 

Collection Optics

 

Polarization
Rotator

Plasma

Laser
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Unprecedented Spectral Resolution
Example: NSTX at ~0.4 T

Direct observation of 
heating beam:
Width ~0.3 nm 
(geometric broadening)

Limit of heating beam resolution:
Width ~0.04 nm (beam 
divergence)

HTPD_illustrations.nb 1

Printed by Mathematica for Students

MSE-LIF system 
with diagnostic neutral beam
Width ~0.01 nm (beam energy 
spread)

Separation between Stark           
components 
~0.03 nm (90 kV D beam, 0.4 T)

• Measurement at lower fields than traditional MSE. 
• Precise measurement of |B| with laser or beam voltage sweep: Use to 

reconstruct pressure and current profiles. 
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Factors Determining Signal Linewidth:

Issue Previous Value Present Value

H Natural Linewidth 100 MHz 100 MHz

Laser Linewidth 70 MHz 1 MHz

Laser Frequency Drift 0.001 nm 0.0001 nm (60 MHz)

RF Pickup on HV 100’s V 2 V (120 MHz)

AM line noise from RF on HV 15 V 2 V (120 MHz)

Line Ripple on HV 10’s V 1 V (60 MHz)

Axial V spread in source 10’s V 5 V (300 MHz)

Collisions in beamline 50 V (?) 50 V (?) (3 GHz?)

Conversion: 100 V 6 GHz 0.09 Angstroms
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Diagnostic Neutral Beam

RF source built in collaboration with LBNL
Low noise HV power supply and sweep capability built in collaboration with 
PPPL

Routine operation in development lab: 30–40kV, 40 mA (1.5 kW) 0.26◦ 
divergence,  ~70% full-energy fraction, ~65% neutral fraction, ~1 cm 
diameter, CW operation
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Initial Testing: Beam Into Gas at Low B

Tunable ring dye laser (Coherent 899-21) near 650 nm,  <1 MHz Linewidth, 
300 mW, pumped by 514 nm argon ion laser

Molecular hydrogen gas in present target chamber

Magnetic field coils for up to 100 Gauss 

    
Detector

 Filter

         
Laser

Single-mode Fiber

Magnet

Coils
B

Diagnostic Neutral Beam

Magnet

Coils

Observation in 

H2 Gas Cell
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H-alpha Fine Structure
Fine structure spectrum 
spans 0.02 nm at zero field

Comparable to ~0.03 nm 
separation between Stark 
lines in NSTX at 0.4 T

l is orbital angular 
momentum quantum 
number, j is total angular 
momentum quantum number 
l ±1

Seven allowed transitions: 
Shown in diagram 
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LIF Enhancement at Low Field

B=0 G B=45 G

B=20 GB=20 G
 E. L. Foley and F. M. Levinton.  J. Appl. Phys. 98(9):093101, (2005)

Laser fixed, beam voltage swept across wavelength range of fine structure spectrum (Doppler 
shift varies with voltage - lower energy to right on plot) 

Peak signal increase nearly 10X (note change in scale)

Motional Stark field causes levels to mix, allowed transitions change
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Quantum Mechanics Calculation

HZn = (glLz + gsSz)µBBz

HL = eBvr(x⃗sinφ − y⃗cosφ)

E⃗L = v⃗ × B⃗

HEr = eE⃗r(x⃗cosη + y⃗sinη)

B

�

⇤
⌅

S

e1

e2

z

x

y

v

vr

EL

Er

⇥

Fine Structure: Spin-Orbit Coupling, Relativistic Effects, Lamb Shift.            
from experiments.E0...En

Linear Zeeman Effect:

Motional Stark Effect:

Stark Effect of Radial Electric Field: 

Fully General Calculation
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State Mixing: Results from QM model
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Collisional Radiative Model
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Unique aspects of CRISP CRM

Includes all fine-structure sublevels: 18 states in n=3, 8 in n=2, 2 in n=1
Complete QM calculation of radiative transition parameters and their dependence on 

background E and B fields

Transition Probability: Ann
′(B) =

4e2ω3

3!c3
| r⃗nn

′(B) |2

Lifetime:

Laser Pumping Term:

Oscillator Strength:

τi(B) =

1

∑

k

Aik(B)

W (B) =
2π2rocflu(B)I(ωul)

!ωul

fynn
′(B) =

2mωnn
′

!
| ynn

′ |2

 E. L. Foley and F. M. Levinton. J. Phys. B 39 (2006) 443-453 16



Model Agreement with Data

CRISP model shows good agreement with Collisionally-Induced Fluorescence (CIF) and 
LIF behavior
CIF signal decreases as 3s loses population due to lifetime decrease
LIF first rises with applied field, as new transitions are allowed, then drops as 2s population 
lost to ground.
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MSE-LIF at Intermediate Field

Increase n=2 population available for excitation
– Ensure full beam neutralization
– Reduce re-ionization in beamline
– Provide greater collisional excitation from n=1

Improve linewidth match of beam and laser
– Reduce beam linewidth
– Increase laser linewidth

Challenge: Signal Level
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Collisional Excitation in Plasma

Model with 
hydrogen 
plasma 
background - 
rates from 
Hutchinson 
’02.
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CRM in Plasma

Neutral Gas Helicon Plasma* NSTX Plasma

n2/n1 2s~10-3  
2p~5x10-5 8x10-4 3x10-3

n3/n1 5x10-5 3.5x10-4 1x10-3
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HTPD_illustrations.nb 1

Printed by Mathematica for Students

Parameter Linewidth

Natural linewidth ~100 MHz

Laser linewidth ~100 MHz

RF on accel. grid ~2 V = ~120 MHz

RF AM line noise ~2 V = ~120 MHz

Line ripple on HV ~1 V = ~60 MHz

Energy straggling ~50 V = ~3 GHz

Neutral 
Beam
Energy
Spread

Laser 
Linewidth

Need to maximize overlap of laser and 
neutral beam energy distribution

wavelength 

Low p broadening ~50 V = ~3 GHz

Linewidth Match of Beam and Laser
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Neutral Beam Energy Spread

Recent measurements of 
neutral beam emission with 
Fabry-Perot show fine structure 
of collisionally-induced 
fluorescence
FWHM ~6 GHz (~100 V)
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New Laser Development

Required Laser Characteristics:
• Tunable near 651 nm

• Linewidth to match neutral beam energy spread (~6 GHz)

• Power per unit linewidth comparable to dye laser experiments: 
1.5 W/GHz

• Good beam quality to match 1 cm neutral beam diameter and 
0.26˚ beam divergence

• Reliable operation

• Ease of use (compared to dye system)
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Diode Laser Array with VBG Feedback
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Side View:
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651 nm Diode Array

Custom wafer growth by Modulight Inc

10 W, 652 nm @ 20˚C - operate at 15˚C for 651 nm

19 emitter array, 150 micron emitter width

Modulight, Inc. 
CONFIDENTIAL 

 

 
 

Modulight, Inc. 
Tel. +358 20 743 9000,  Fax +358 20 743 9009 
P.O.Box 770, FIN-33101 Tampere, FINLAND 

www.modulight.com 
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Figure 2. Mounted 650 nm laser bar. 

2.2 Characterization results 

The mounted bars have been characterized at 20°C. The power has been measured 
using an integrated sphere and spectral measurements have been performed with an 
optical spectrum analyzer.  
 
Figure 3 shows the light power and forward voltage as functions of the DC drive 
current. The bars reach 10 W output power at 20°C and therefore fulfill the power 
specification. 
 
The spectral properties are shown in Figure 4 and Figure 5. In Figure 4 the 
dependence of the central wavelength on the operating power and operating current 
is shown. Figure 5 shows the example spectral plots at full power (Pop = 10 W) at 
20°C. The central wavelength meets the wavelength specification of 653 ± 2 nm 
being about 652 nm. 

Modulight, Inc. 
CONFIDENTIAL 

 

 
 

Modulight, Inc. 
Tel. +358 20 743 9000,  Fax +358 20 743 9009 
P.O.Box 770, FIN-33101 Tampere, FINLAND 

www.modulight.com 
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650 nm Laser Bar 
Light Power and Forward Voltage
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Figure 3. Light power and forward voltage for 650 nm laser bar at 20°C. 
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Figure 4. Dependence of the central wavelength on the operating power and 
operating current. 
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Volume Bragg Grating

VBG created with 3D image of interference pattern between 
coherent optical fields in photorefractive glass

Allows selection of narrow wavelength range - ∆λ depends on 
length

Angular acceptance also narrow
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Precision Collimation Optics

Theoretical limit throughput gives only 20% of laser light accepted to grating

Can’t afford to lose light to smile, pointing errors, other misalignment
Procure custom phaseplate tailored to individual diode array in desired operating 
conditions

Technology developed at Heriot-Watt University, available from Power Photonic

Images courtesy of Power Photonic 27



Laser Fabry-Perot Data

Data is shown with 11.6 GHz Gaussian overlay
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Laser Power in Narrow Line

Here, 87% of total power is in feedback mode
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Performance on NSTX
MSE-CIF data from NSTX, MSE-LIF laboratory performance and 
collisional-radiative model used together to predict signal levels 
for NSTX - expect 10x higher photon count rates (at detectors) 
than CIF system. Time resolution of better than 10 ms expected.

Magnitude of B resolved to few Gauss range, Pitch angle at least 
comparable to CIF system ~0.3 degrees.

Spatial resolution improved over initial calculation - was limited 
by view angle with respect to beam, and beam size. Laser 
designed with vertical elongation and horizontal compression to 
reduce overlap. Fundamental limit due to emission decay time 
close to 1 cm.
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NSTX Installation
MSE-LIF installed on 
NSTX for 2011 run.

•

DNB in NSTX!
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View Layout on NSTX
32 radial channels

Radial range similar to 
that of MSE-CIF 
system

Near-radial injection 
angle minimizes 
sensitivity to radial 
electric field on pitch 
angle measurement

R=88.7 cm

R=156.1 cm

DNB

Optics

Fiber Array

Outline of NSTX 
Vacuum Vessel
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Fiber Bundles and Collection Optics

10 radial channels (in 5 fiber bundles) installed on NSTX, shown 
backlit.  Additional 22 channels when NSTX-U starts in FY15.
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In-Vessel Calibration
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Channel Locations in NSTX
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MSE-LIF Data in Gas-Filled NSTX

Fully remote operation from NSTX control room

Beam voltage swept over fixed laser wavelength
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Magnetic Field Scan in Gas-filled NSTX
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Summary
Experiments and modeling done to establish foundation of 
understanding for Motional Stark effect with laser-induced 
fluorescence (MSE-LIF) measurement
Laser development complete
System installed on NSTX for FY2015 run
Successful measurements made in gas-filled NSTX torus
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