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Motivation for Current Profile Control in NSTX-U

@ Some of the next-step operational goals for NSTX-Upgrade include [1]:

— Non-inductive sustainment of the high-5 spherical torus.
— High performance equilibrium scenarios with neutral beam heating.
— Longer pulse durations.

@ Active, model-based, feedback control of the current profile evolution
can be useful to achieve those stability and performance criteria.

@ The g-profile, which is related to the toroidal current density in the
machine, plays an important role in the stability and performance of a
given magnetic configuration.

@ Availability of the additional neutral beam current sources enables
feedback control of the current profile in NSTX-U.

[1] GERHARDT, S. P. et al., Nuclear Fusion (2012).
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Model-based Feedback Control Scheme

@ Modeling for control design and not for physical understanding!

@ The control-oriented model only needs to capture the dominant
effects of the actuators on the current profile evolution.

@ Control-oriented model is embedded in current-profile controller.

control-oriented

actuators measurements

current-profile
controller
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First-Principles-Driven (FPD) Current Profile Modeling

I
| |Physics-based Empirical Models Poloidal Flux Evolution Model
1 for: —|—

. Magnetic Dif fusion Equation
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First — Principles — Driven (FPD) Current Profile Evolution Model

@ The evolution of the poloidal magnetic flux is given by [2]:

oy n(r,) 10 <A ('ﬁb) - (jni - B)
— = ——— | pDy— | + RoH"(T,)—~ 1
o poppF? pIp v op O B 1)
with boundary conditions
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where Dy (p) = F(p)G(p)H(p), and F, G, H are geometric factors
pertaining to the magnetic configuration of a particular plasma
equilibrium.

[2] OU, Y., et al., Fusion Engineering and Design (2007).
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First-Principles-Driven (FPD) Current Profile Modeling

@ NSTX-U-tailored [3] empirical models [4] for the electron temperature,
electron density, plasma resistivity, and noninductive current drives [5]
takes the form

ne(ps 1) = nl"™ (p)uy (1) (3)
rof (
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)T = "‘Tf’((pp’ o 5
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+ kJeVRO (31/1
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[3] ILHAN, Z. O. et al., 55" Annual Meeting of the APS DPP (2013)

[4] BARTON, J. E. et al., 52" IEEE CDC (2013)
5] SAUTER, O. et al., Physics of Plasmas (1999), (2002
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FPD Model Tailoring for NSTX-U Run 121123R42

© NOTE: NSTX-U run 121123R42 is a TRANSP run with the NSTX-U
shape and actuators, using the scaled profiles from NSTX.
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Fig. 1: Reference (a) magnetic configuration parameters, (b) bootstrap current coefficients,
(c) electron density and temperature profiles. (d) Individual NB deposition profiles. Inputs: (e)
plasma current and n. regulation, (f) NB injection powers (constant after 4s.)
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FPD Model Tailoring for NSTX-U Run 121123R42
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@ Poloidal Flux Profile Comparison - ¢(), at fixed time
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Fig. 2: Poloidal magnetic flux profile evolution comparison.
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FPD Model Tailoring for NSTX-U Run 121123R42

@ Safety Factor Profile Comparison - ¢(p), at fixed time
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Fig. 3: Safety factor profile evolution comparison.
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FPD Model Validation for NSTX-U Run 121123N80

@ The FPD model tailored based on the NSTX-U TRANSP run
121123R42 is simulated using the inputs and the geometry of the
NSTX-U TRANSP run 121123N80.
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Fig. 4: Control inputs extracted from NSTX-U TRANSP run 121123N80: (a) Plasma current and
n, regulation, (b) NB injection powers (same trend continues after 6s.)
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FPD Model Validation for NSTX-U Run 121123N80
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Fig. 5: Poloidal magnetic flux profile evolution comparison.
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FPD Model Validation for NSTX-U Run 121123N80

@ Safety Factor Profile Comparison - ¢(p), at fixed time
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Fig. 6: Safety factor profile evolution comparison.
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FPD Model in Control-Oriented Form

@ By substituting the simplified scenario-oriented models for the electron
density (3), electron temperature (4), plasma resistivity (5), and
noninductive current drives (6) into the magnetic diffusion equation
(1)-(2), space and time functions can be separated.

@ As a result, the magnetic diffusion equation takes the form

U 19 AN
o =03 2 (3000155 ) + Zf, lt) 5 ) (51 )
iy (7)
where the boundary conditions become
~ =Y, ~ = —Jpld, t7 8
9,0 |, foun(t) (8)
where R
fo= 2 ©)
"6, |
p=1 lp=1
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FPD Model in Control-Oriented Form

@ Spatial functions appearing compactly in (7) can be expressed in terms of
various plasma model reference profiles and constants as

ksp (9)Zeg ™ (p)°
HopyF (0, (0212 (p)*/2

fr](ﬁ) =

Dy(p) = F(p)G(p)H(p) (1)

5\ 1/2prof (5)1/2
kr,(p)' /2T (p) (i=1,2,...6) (12)

"™ (p)3/2
o, ) k02 1)
fos(p) = RoH(p) F(f)) {2£31 a5 o ( )1/2Tl’r0f( A>1/2
0

kTe( )Tf’ ( p) (ﬁ)zﬂnprof(ﬁ)S/z
n]gwf( ) ( )3/2Tpr0f( )3/2
(13)

+ {2051+ L+ alsa} b {
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FPD Model in Control-Oriented Form

@ Time functions appearing compactly in (7) are nonlinear functions of the
physical inputs:

u, (1)

(1) = TG /2(20,<t>3 - (14)

ui(t) = I(t)Pig) 0 (i=1,2,..,6) (15)
un(l‘)3/2

ubv(t) = I(t)l/sz,(t)'/“ (16)

up(r) = 1(1), (17)

where P, (t) = Z?Zl Pi(t).

@ Equations (14)-(17) are the outputs of the profile controller (the so-called
“control inputs” for the numerical simulations).
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FPD Model in Control-Oriented Form

@ The safety factor ¢(p,1) = —d®/d¥(p, ) can be used to specify the
toroidal current density. Using ® = wBy 0p* and p = p/p», the g-profile is
expressed as: 8% dp

A 1 d® do ap 95 By 0ppp
N = - = —— = — e — ) 1
100 = 2= "0 = " 2nay 228~ 00/0p (18)
@ Since the safety factor ¢ depends inversely on the poloidal flux gradient, it
is possible to define o5 o 19
(.0 =5, (19)
as the to-be-controlled variable.
@ Substituting the to-be-controlled variable 0(p,t) = ‘f;/j into (7),
oY 1 6
B :fnun; (pAD;/ﬂ + D¢,0 + ﬁD¢9/> + Zf,u, —|—fbsubs071, (20)

i=1
where (.)" = 9/9p for simplicity. Also, note that the time and space
dependencies are dropped to reduce the representation.

@ By differentiating (20) wrt p, the PDE governing the evolution of the
fo-be-controlled variable 0(p, t) can be obtained.

Z. llhan, J.Barton, et al. (LU & PPPL) Optimal current profile control in NSTX-U October 29, 2014 15/27



Model Reduction via Spatial Discretization

@ The PDE governing the evolution of the to-be-controlled variable 6(p, )
can be expressed compactly as

00 ) A ) 1 0 o
i ho(p)un0” + hi(p)unt’ + ho(p)uy0 +fb/s§'4bs —Jos gttns + ;f/”i )
(21)
subject to the boundary conditions
9|ﬁ:0 =0, 9]ﬁ:l = —fbub(t), (22)

@ The governing PDE (21) is discretized in space into / nodes using the
truncated Taylor series approach while leaving the time domain
continuous. The discrete form of (21) yields

6(1) = g(6(1),u(r)) (23)

@ 0=1[0,,03....0,,]" € RU=2x! g the value of A(p,t) atthe n = — 2
interior nodes (i.e., “states”).

® u = [uy, uy,un, ..., us, tps, up)” € R2*!is the input vector

@ g ¢ RU=2x1 is a nonlinear vector function of the states, inputs and the
model parameters.
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Model Linearization

6(1) = g(0(r),u(r)) (24)

@ Let 4 (r) and ug(r) define a set of feedforward values of the system
states and inputs satisfying
Oy = 2(Oy, up) (25)

@ To obtain a model suitable for control design, the following perturbation

values are defined:
A6(1) = 6(1) — By (1) (26)

Au(r) = u(t) —ug(1), (27)

@ Equation (24) can be expanded around the desired feedforward state and
input vectors by using first order Taylor series approximation

. og og
0 =g(Op.ug) + 55 0(0 )+ 2a e(u — ) (28)
if U RLIT
B B
AD + 6y = g(0,uy) + 6‘5 A6() a% Aur) (29)
JiRLIA R
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Linear-Time-Variant (LTV) Model for the Perturbation

Values
AG(r) = A(t) AB(t) + B(1) Au(r) |, (30)
where
A(r) = % e RU=DX(=2) (31)
O (1) 205 (1)
og (1-2)%9
B(1) P eR (32)
U0y (1) g (1)

are the so-called “system jacobians”.

@ Equation (30) represents a linearized, state-space version of the
nonlinear plasma response model around some predefined “feedforward”
state and input trajectories, 64 (r) and uy(?).

Z. llhan, J.Barton, et al. (LU & PPPL) Optimal current profile control in NSTX-U October 29, 2014 18/27



Control Objective

@ The goal is to achieve desired safety factor values g (or, desired 0 values
since 0(p,t) = =By 0pip/q(p. 1)) at certain plasma radial locations.

@ To select those radial locations where profile control is to be enforced, the
“output” is modeled as y(1)=CA0(t), where C € R"*" is the “output
matrix”and y(t) € R™<! is the output vector with m = 9 (number of control
outputs chosen equal to the number of control inputs).

@ The control objective is to make the output y(7) track a constant reference
z as closely as possible during the time interval [ty, t;] with minimum
control effort. For this application, the tracking error, e(r) € R™*!, is
defined as .

e(r) = / (r)—zldr = é@t)=y(t) —z=CAO(t) —z (33)
fo

@ In order to reject the disturbance and improve the tracking performance
of the close-loop system, integral action is required in the optimal control
law. This is achieved by defining an augmented state vector, X as

~n | e
X(r) = [Ae(t) ] (34)
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Control Design

Linear Quadratic Integral (LQI) Optimal Controller Design
@ The optimal control problem is stated with the following cost functional

min J = %}T(tf)ﬁ(tf)x(tf) + % /, ’ [ET(t)QE(t) + AuT(t)RAu(t)] dt| (35)

Au(r)
subject to
x(1) = A(DZ(t) + B(1) Au(r) (36)
@ Note that @ and R are symmetric and positive definite weight matrices
and )
e Om><m Cm><n 3 Om><m
=1 0 A<r>m} - BU) [B(t)m] ®7)

@ The solution of the optimization problem (35)-(36) yields an optimal
solution for Au(r) as

Au(t) = —K;(1) /l/ [C(T)AO(T) —z] dT — Kp(t) AO(1), (38)

fo
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Closed-Loop Control Simulation Results

@ Two different closed-loop control simulations are carried out utilizing the
same feedforward inputs but different initial conditions and target profiles.
@ Both feedforward 6 (p, ) and target (, t) state trajectories are

generated by simulating the magnetic diffusion equation (MDE) with the
physical inputs set to the following arbitrary constants:

u, P, [MW] | P, [MW] | P; [MW]
Feedforward 0.7 0.1 0.4 0.7
Target (Casel) | 1.0 0.5 0.7 0.9
Target (Case ll) | 0.9 0.3 0.8 0.8

P4 [MW] | Ps [MW] | Ps [MW] | I, [MA]
Feedforward 1.0 1.3 1.1 0.5
Target (Casel) | 1.1 1.1 1.5 0.7
Target (Case ll) | 1.3 0.9 1.2 0.9

@ The reference profiles and constants of the control-oriented model are

adopted based on the NSTX-U TRANSP run 121123R42.
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Closed-Loop Control Sim

ulation Results
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Figures (upper left & right): Time evolution of the optimal outputs (solid) with their respective targets (dashed).
Figures (lower left & right): Comparison of the initial, feedforward and desired 6(5) profiles along with the profile
achieved by feedforward+feedback control at r = 2 s.
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Closed-Loop Control Simulation Results

o CASE |
0.75
1
0.7]
0.9
£ 065 _
= =
£ o6 o8
0.55 0.7
0'8.1 1 2 3 4 0.1 1 2 3 4
time (s.) time (s.)
o CASE Il
1 0.75
0.9 0.7
0.65
08 _
= = o0s
= e
=07
0.55
0.6 05
0'8.1 1 2 3 4 0'48.1 1 2 3 4
time (s.) time (s.)

Figures: (left) Time evolution of the optimal plasma current, (center) time evolution of the optimal n. regulation,
and (right) time evolution of the optimal neutral beam injection powers.
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Closed-Loop Control Simulation Results
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Figures (left & right): Time evolution of the safety factor profiles.
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Closed-Loop Control Simulation Results

@ The same simulation as in case 1 is carried out, this time by turning the
feedback off in between 2 — 3 sec.
@ Time Evolution of the Optimal Outputs:
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Z. llhan, J.Barton, et al. (LU & PPPL) Optimal current profile control in NSTX-U October 29, 2014 25/27



Closed-Loop Control Simulation Results

@ Time Evolution of the Optimal Inputs:

P W)

g
&
PR O P R S
() Pa(r) (f) Ps(1) (9) Ps(1) (h) un(r)

Figures: Time evolution of the optimal inputs
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Conclusions

@ An NSTX-U-tailored plasma response model is put into a control-oriented
form and the resulting infinite-dimensional, nonlinear PDE is then reduced
through spatial discretization by a truncated Taylor series expansion.

@ The nonlinear, finite-dimensional model is linearized around feedforward
state and input trajectories. In this way, a state-space LTV model is
obtained describing the dynamics around the feedforward trajectories.

@ An LQI feedback controller is designed based on this control-oriented,
LTV model to regulate the poloidal flux gradient profile, and hence the
current profile or the safety factor profile, around a desired target profile.

@ The effectiveness of the proposed controller in shaping the poloidal flux
gradient profile is tested in simulations based on the MDE solver.

@ The next step is to test the controller in a TRANSP closed-loop simulation
and then in experiments once NSTX-U starts operation.
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