

Supported by

Experimental Observation of High-k Turbulence Evolution across L-H Transition in NSTX

Coll of Wm & Mary Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehigh U **Nova Photonics Old Dominion** ORNL PPPL **Princeton U** Purdue U SNL Think Tank. Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Tennessee **U** Tulsa **U** Washington **U** Wisconsin X Science LLC

Y. Ren¹

R.E. Bell¹, D.R. Smith², S.J. Zweben¹, W. Guttenfelder¹, S.M. Kaye¹, B.P. LeBlanc¹, E. Mazzucato¹, K.C. Lee³, C.W. Domier⁴, L. Shao⁵, H. Yuh⁶ and the NSTX Team 1. PPPL 2. UW-Madison 3. NFRI 4. UC-Davis 5. ASIPP 6. Nova Photonics

56th Annual Meeting of the APS Division of Plasma Physics New Orleans, Louisiana, October 27-31, 2014

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kvushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res. Kiev loffe Inst TRINITI Chonbuk Natl U **NFRI** KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER **ENEA, Frascati** CEA. Cadarache **IPP**, Jülich **IPP, Garching** ASCR, Czech Rep

Office of

Highlights

- First detailed measurements of high-k (electron-scale) turbulence across L-H transition in NSTX
 - L-H transition at current flattop
 - High-k turbulence quasi-stationary before L-H transition, intermittent after L-H transition and significantly suppressed ~15 ms after L-H transition
 - Suppression of high-k turbulence at lower wavenumbers, i.e. $k_{\perp}\rho_s \leq 9-10$
- Low-k turbulence measured by BES and GPI at different radii but similar temporal behavior with high-k measurement
 - Showing suppression of low-k turbulence into H-mode at r/a>0.8
- Linear stability analysis using GS2 code showing some consistency with turbulence measurements
 - Decreased ETG growth rate into H-mode
 - Low-k turbulence more suppressed by ExB shear into H-mode

Turbulence Diagnostics in the Experiment Cover from Low-k to High-k

 $\vec{k_p}$

 θ_{s}

Probe

beam

0.0

 $\overrightarrow{k_i}$

 \vec{k}_s

Turbulence Diagnostic configuration for the experiment

L-H Transition is Triggered by NBI Power Step-up during Current Flattop

- L-H Transition at current flattop reduces measurement complications
- Better high-k measurement due to favorable Doppler frequency shift
- Less MHD activity

Edge Transport Barrier (ETB) is Established after the Dithering Phase

- Spikes in divertor D_{α} after the L-H transition show the dithering feature of the L-H transition
- Low-f MHD activity is relatively benign after the L-H transition

- Clear H-mode density ear appears at t=365 ms, showing the establishment of ETB
 - The density ear due to edge accumulation of carbon impurity
- High-k scattering system measures turbulence k spectrum at r/a~0.7-0.8 and ETB is at r/a>0.9

LCFS at

R=146 cm

Four Phases in the High-k Turbulence Evolution can be Identified

- Quasi-stationary turbulence before the L-H transition
- Dithering in high-k spectral power observed after L-H transition
- Significant suppression of high-k turbulence in 365<t<380 ms

 Off-center peak denotes the scattered signal

 f=0 peak is from stray radiation

Broad Band High-k Turbulence is Seen across the L-H Transition

- Frequency spectra are shown for an
 exact Thomson time point: t=348 ms
- -70• Mean real frequency

much smaller than Doppler frequency shift

Broad Band High-k Turbulence is Seen across the L-H Transition

- Frequency spectra are shown for an
 exact Thomson time point: t=365 ms
- Turbulence
 propagates in the electron diamagnetic direction

Broad Band High-k Turbulence is Seen across the L-H Transition

- Frequency spectra are shown for an exact Thomson time point: t=382 ms
- Real frequency
 distinguishable from
 the Doppler
 frequency shift for
 channel 3

High-k Turbulence Changes in Amplitude and Frequency across the L-H Transition

Significant Drop of Spectral Power in Lower Wavenumbers is Observed in the High-k Spectrum

- Small variation before the L-H transition: quasi-stationary
- Significant drop, i.e. a factor of about 7, in the peak spectral power at t=365 ms after the L-H transition

- Even smaller at 382 ms

• The drop in spectral power only occurs at $k_{\perp}\rho_s$ <9-10

Similar Observations in Spectral Power Drop in Lower Wavenumbers in Different NSTX Scenarios

Large Intermittency (Dithering) in High-k Turbulence from t=350 to 365 ms

- Overall turbulence power decreases into H-mode
- Periods of minimum turbulence appear intermittently (~1-1.5 ms)

Large Intermittency (Dithering) in High-k Turbulence from t=350 to 365 ms

- Overall turbulence power decreases into H-mode
- Periods of minimum turbulence appear intermittently (~1-1.5 ms)
 - Fast decrease and rise of turbulence power in 0.5-1 ms

Large Intermittency (Dithering) in High-k Turbulence from t=350 to 365 ms is Similar to Divertor D_{α}

- High-k turbulence intermittency is on the same time scale as the dithering of divertor ${\rm D}_{\alpha}$
- A definite correlation is not yet established

Low-k Turbulence Measured by BES Shows Similar Temporal Behavior as High-k Turbulence

 High-k channel 3 measuring k_⊥p_s ~6-7 is compared with BES measurement at R=142 cm (top of the H-mode pedestal)

Low-k Turbulence Measured by BES Shows Similar Temporal Behavior as High-k Turbulence

• High-k channel 3 measuring $k_{\perp}\rho_s \sim$ 6-7 is compared with BES measurement at R=142 cm (top of the H-mode pedestal)

- Quasi-stationary turbulence before the L-H transition
 - $-\frac{n}{n} \approx 2.9\%$ from BES
- Reduced turbulence into H-mode
 - -t~365-390 ms
 - $-\frac{n}{-} \approx 0.94\%$ from BES
- Intermittent turbulence right after the L-H transition
 - -t ~ 350-365 ms
 - Similar temporal intermittency in low-k and high-k

GPI Measurements also Show Similar Overall Temporal Behavior as the High-k Turbulence

- Quasi-stationary turbulence before the L-H transition
- Intermittent and decreasing turbulence right after the L-H transition

GPI Measurements are more Intermittent than the High-k Turbulence

Equilibrium Profiles Changes can be Significant across the L-H Transition

Quantities averaged in the high-k measurement region

- ~30% decrease in normalized inverse ETG scale length
- ~30% variation in decrease in normalized inverse ITG scale length
- Significant decrease in normalized inverse density gradient scale length
- Significant increase in T_e , T_i and n_e (~45-60%)

Linear Stability Analysis Shows that ITG and ETG are both Unstable

- ETG linear growth rates decrease into H-mode
 - ETG mode real frequency increases
- ITG growth rates vary much less significantly

ETG Stability across the L-H Transition is Consistent with the Measured High-k Turbulence Variation

- ETG linear growth rates decrease into H-mode
- The measured high-k turbulence also decreases into H-mode
- The observed intermittency requires nonlinear processes

ETG Close to Marginal Stability in the High-k Measurement Region Further into H-mode

• The decrease in ETG linear growth rates is due to the decrease of ETG and increase of critical ETG

Ion-scale Modes are more Suppressed into H-mode

- $\omega_{E \times B,WM} / \gamma_{max}$ is used to assess ExB shear effect on ion-scale modes
- $\omega_{E \times B,WM} / \gamma_{max}$ increases in the high-k measurement region into H-mode

Summary

- First detailed measurement of high-k (electron-scale) turbulence across L-H transition in NSTX
 - Quasi-stationary high-k turbulence before L-H transition, intermittent after L-H transition and significantly suppressed ~15 ms after L-H transition
 - Suppression of high-k turbulence at lower wavenumbers, i.e. $k_{\perp}\rho_s \le 9-10$, similar observations also in different NSTX scenarios
- Low-k turbulence measured by GPI and BES at different radii but similar temporal behavior as high-k turbulence observed
 - Intermittency observed after L-H transition, similar to high-k turbulence
 - Showing suppression of low-k turbulence into H-mode at r/a>0.8
- Linear stability analysis using GS2 code showing some consistency with turbulence measurements
 - Decreased ETG growth rate into H-mode
 - Low-k turbulence more suppressed by ExB shear into H-mode
 - Nonlinear processes needed for explaining the observed intermittency
- Acknowledgement: Work supported by DoE