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Overview 

•  Stochastization of e- guiding center orbits by CAEs & GAEs 
posited to cause thermal transport in ST core 
–  CAE/GAE activity correlates with enhanced χe  in core of H-mode 

NSTX beam heated plasmas [D. Stutman, PRL 2009; K. Tritz, APS DPP 2010 Invited Talk] 

•  Early transport simulations with guiding-center code ORBIT 
promising – need more realistic experimental mode inputs  

•  Structure and amplitude of CAE & GAE δn#measured in beam-
heated NSTX H-mode � use for future ORBIT simulation 
–  Radial structure & amplitude from inverted reflectometer array data 
–  Toroidal mode numbers and frequencies from edge B-dot array 
–  Modes identified local dispersion relations 

•  Simulation of CAEs & GAEs by HYM code compared with 
experiment � promise for transport prediction capability 
–  substantial validation efforts needed! 
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•  Beam-heated spherical torus  
plasmas feature high frequency Alfvén 
eigenmodes (AE)  
(f > ~ 400 kHz):   
Compressional (CAE) &  
Global (GAE) 

•  CAEs & GAEs correlate with  
enhanced core χe in NSTX 

•  Resonant interaction of multiple 
modes with e- guiding center orbits 
proposed to stochastize orbits, 
enhancing thermal transport 

CAEs and GAEs potentially cause significant core electron 
thermal transport in STs 

[D. Stutman et al., PRL 102 115002 (2009)]!
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Testing hypothesis requires comparison of experimental 
transport with realistic orbit simulation 

•  Early transport simulations with guiding-center code ORBIT 
consistent with hypothesis  
[N. N. Gorelenkov et al., NF 2010; K. Tritz, APS DPP meeting 2012; N. A. Crocker et al., NF 2013] 

–  assumed mode structures (e.g. Gaussian radial structure) 
–  amplitudes from interferometer & simplified analysis of 

reflectometer measurements 

•  More realistic representation of modes needed for more 
stringent test 
–  Toroidally distributed Mirnov array: experimental spectrum with 

measured frequencies & mode numbers 
–  δn#mode structure & amplitude from inversion of reflectometer 

array measurements 
–  Mode polarization (shear/GAE or compressional/CAE) from 

Mirnov & reflectometer measurements + local dispersion relations 

4!



NSTX-U! 56th APS DPP, New Orleans, LA – Core electron therm. Transp. in NSTX due to orbit stochast. by high freq. AEs, N. Crocker (10/29/2014)!

Structure and amplitude of CAE & GAE δn#measured in high 
performance plasma 

•  High frequency AEs observed in  
6 MW beam-heated H-mode plasma 

•  High frequency AE structure  
measured with reflectometer array 

•  Toroidal mode numbers (n) and  
frequencies (f) determined using  
edge B-dot array   

•  Modes identified using: 
–  measured mode structures, f & n 
–  local dispersion relations: 

CAE (compressional Alfvén): ω2 = k2VA
2 

GAE (shear Alfvén): ω2 = k||
2VA

2 

•  ORBIT transport modeling with  
measured modes will be compared with experimental transport 
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Structure and amplitude of CAE & GAE δn#measured in high 
performance plasma 

•  Observed modes identified as:  
–   GAEs: f < ~ 600 kHz, n = -6 – -8 
–   CAEs: f > ~ 600 kHz, n = -3 – -5 

•  GAEs and CAEs have distinct 
δn#structural differences  
–  Edge: GAE δn#> CAE δn 
–  Core: CAE δn#> GAE δn 
–  CAES: strongly peak toward core 
–  GAES: broad structure, peaking toward core;  

large edge peaks � edge displacement + large |�n0| 
6!
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CAE+GAE simulation shows promise for first principles 
transport prediction 

•  Hybrid MHD (HYM) code  
simulates CAE structure and 
stability 
–  3D, coupled MHD fluid &  

fully kinetic fast-ions 
–  realistic equilibrium 

•  Simulation & experiment compared  
for beam heated H-mode plasma 
–  most unstable CAEs and GAEs have similar frequencies and mode 

numbers to observed experimental spectrum [see E. Belova YI1.6] 
–  GAEs structures compared: similar broad structures & strong edge 

peaking 
•  predictive capability for CAEs & GAEs + transport simulation 
�  predictive capability for core electron thermal transport 
–  substantial model validation efforts required! 

7!



NSTX-U! 56th APS DPP, New Orleans, LA – Core electron therm. Transp. in NSTX due to orbit stochast. by high freq. AEs, N. Crocker (10/29/2014)!

Measurement Technique 
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Toroidal mode numbers and frequencies determined 
 using edge B-dot array 

•  Modes appear as peaks in δb spectrum 

•  n determined from δb measured by edge 
toroidal array of B-dot coils 

–  method: find n that minimizes χ2: 

Nφ=10 is number of coils. 

•  Smallest coil spacing is 10° �  
can distinguish |n| ≤ 18 

NSTX !
φ

B-dot coil 
locations!

!! ≡ 1− !"!!!"#
∀!

!
!! |!"|!

∀!
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• Two arrays: �Q-band� & �V-band� 
– Q-band: 30, 32.5, 35, 37.5, 42.5, 45, 47.5 & 50 GHz 
– V-band: 55, 57.5, 60, 62.5, 67.5, 70, 72.5 & 75 GHz 

• Arrays closely spaced (separated ~ 10° toroidal) 
• Single launch and receive horn for each array 
• Horns oriented perpendicular to flux surfaces �  

frequency array = radial array 
• Cutoffs span large radial range in high density 

plasmas (n0 ~ 1 – 7 x 1019 m-3) 

Reflectometers provide radial array of measurements 

NSTX cross-section 

Launch and Receive Horns 

30-50 GHz 

55-75 GHz 
(not shown: horns modified to 
optimize for frequency range) 

ne from 
Multipoint 
Thomson 
Scattering!
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Reflectometers measure local density fluctuation in plasma 

•  Microwaves propagate to �cutoff� layer, where density high 
enough for reflection (ωp = ω) 

–  Dispersion relation of �ordinary mode� 
microwaves: ω2 = ωp

2 + c2k2,  
ωp

2 proportional to density  
(ωp

2 = e2n/ε0me) 

–  k → 0 as ω → ωp,  
microwaves reflect at k = 0  

•  Reflectometer measures path length  
changes of microwaves reflected from plasma 
–  phase between reflected and launched waves changes (δφ)  

•  Wave propagation controlled by density – δφ depends on δn 

electric field!

Microwave (�O-mode�) propagation!
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δn#determined from reflectometer measurements using 
synthetic diagnostic 

•  Synthetic diagnostic used to model  
reflectometer response (ξ) to δn 
–   WKB path length (L) approximation: 

•  L = integral of sqrt(1-ωp
2/ω2) from edge to  

Rc, where Rc given by ωp
2(Rc) = ω2 

•  Perturbation modeled with  
cutoff displacement (dc): 
–  δωP2(∝(δn(R)(=(Σiaidc,i(R)�n0(R)(
– Find ai to minimize  
!2=Σi(ξi,meas−ξi,0it)/σ2i,meas# 

•  Fit sensitive to noise in ξ,meas #gradient  
� smoothed ξi,meas used for inversion 
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Cutoff displacement basis functions 
(cubic “B-splines”; cutoff locations as knots) 

dc,i!(R)!

L = L0 +ξ = 1−ωP
2 R( ) ω 2 dR

edge

ωP
2 (R)=ω2

∫
ωP
2 =ωP0

2 +δωP
2 ∝n0 +δn
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Summary 

•  Stochastization of e- guiding center orbits by CAEs & GAEs 
posited to cause thermal transport in ST core 
–  Early transport simulations with guiding-center code ORBIT promising 

— need more realistic experimental mode inputs  
•  CAE & GAE δn#have distinct structural differences in beam-

heated NSTX H-mode 
–  Radial structure & amplitude from inverted reflectometer array data 
–  Toroidal mode numbers and frequencies from edge B-dot array 
–  Modes identified local dispersion relations 

•  Future work: measurements will be used in ORBIT simulation 
for comparison with experimental transport 

•  HYM simulation of CAEs and GAEs compared 
–  Unstable mode numbers and frequencies similar to experiment 
–  GAEs have similar structures 
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Requests for electronic copies 
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