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Objective: Examine predictive capability of reduced 
microtearing-induced electron transport model for NSTX 
H-mode plasmas!

Methodology:!
•  Examine specific discharge!
•  Study profile variations!
•  Determine microinstability characteristics!
•  Parameter variations!
•  Linear stability calculations (GYRO)!

•  Select and apply reduced transport model for χe!

•  Te profiles reasonably self-similar!
•  Ti profiles self-similar up to 0.5 s (large decrease in core)!
•  ne profiles show carbon-fueled electron density “ear” in 

outer region; ear disappears after H-L back-transition!
•  Uncertainties reflect measurement + spline-fitting 

uncertainties!

The discharge used for this study comes from series of 
discharges scanning Ip and BT in discharges that used 
helium glow discharge cleaning+boronization for wall 
conditioning.!

The discharge had Ip=0.7 MA, BT=0.35 T, PNBI+OH~ 4 
MW, κ~2.1!

     - “High” collisionality: νe
*(x=0.5) = 0.2!

•  L-H transition at 0.14s, H-L back-transition at 0.68 s!
•  Type V ELMs during H-phase!
•  Increase of low-n MHD activity after 0.58 s!
•  For this study, data/results will be shown for 0.2, 0.3, 

0.4, 0.5, 0.6, 0.7 s!
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Figure 1: Discharge evolution for NSTX shot 120967, the representative discharge used in

this study. Shown from the top panel down are plasma current, injected neutral beam

power, lower divertor D
↵

emission, line-integral electron density, total stored energy and low

frequency n=1 MHD activity.
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Examine parameter variations that reflect various microinstabilities!
                                          (advancing time from 0.2 s         ) !(a) βe vs νe

*:!
!- both low at early timesèelectrostatic modes important 

(ITG/TEM/ETG)!
!- Both increase with time into regions where KBM and 

microtearing may be important !
(b) α = (q2R0/B)dp/dr vs βeR/LTe!
!-!Large α indicates KBM, large βeR/LTe indicates 

microtearing at x=0.65 !
!-!Parameter variations suggest KBM+microtearing at 

later times (some mixed modes)!
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Figure 3: a) The time evolution of the electron beta vs collisionality for the three radial

locations of interest and b) Time evolution of the MHD ↵ parameter vs �
e

R/L

Te .
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Emerging trends:!

•  Low-β e-s modes driven by grad Te, grad Ti expected 
early!

•  Microtearing and KBM expected at later times (co-
existing?)!

•  grad Te-driven modes expected late at x=0.65!

Trends confirmed by linear microinstability properties 
using GYRO!
•  Profiles and equilibria from TRANSP!
•  Miller equilibrium used in GYRO!
•  Evaluate from kθρs = 0.2 to 40!
•  Show results for x=0.65 (similar results for x=0.5)!
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Figure 4: a) The time evolution of the normalized electron density gradient vs normalized

electron temperature gradient and b) Time evolution of the normalized electron density

gradient vs normalized ion temperature gradient.
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(a) R/Lne vs R/LTe:!
!- Low values of drive terms at early times for x=0.35, 0.5!
!- R/LTe larger at x=0.65 suggesting grad Te drive!
!- R/Lne also large later at x=0.65 – these have large α 

(KBM+microtearing may co-exist) !
(b) R/Lne vs R/LTi!
!-!Large R/LTi early for x=0.5, 0.65, suggesting grad Ti-

driven electrostatic (low β) modes (ITG)!
!-!grad-Ti drive decreases later on!

Profile evolution during discharge (using spline fits to 
the data)!
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Assess role of microtearing for electron transport using 
reduced model!
•  Rebut-Lallia-Watkins (1985): microtearing-based!
•  Use TRANSP to predict Te using RLW from x=0.2-0.8!
•  Use measured Ti, ne, nimp, etc!
•  Ad-hoc χe for x<0.2 to take into account CAE-induced e- transport!
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RLW does poor job in predicting Te in “low” 
collisionality discharge!
•  νe

*(x=0.5) = 0.05!
•  Hybrid TEM/KBM calculated to be most unstable      

mode!
!
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Figure 6: Measured T

e

profiles (solid lines) and those predicted using the RLWmodel (dashed

lines) compared for the six times of interest. The shaded region inside of x=0.2 indicates

where a user-defined �

e

is applied. The outer boundary for using the RLW model is x=0.8.
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Summary and Conclusions!
•  Microtearing can control electron transport in outer regions 

(x>0.5) in NSTX H-mode discharges!
•  High collisionality!
•  RLW reduced transport model does good job when/where 

microtearing expected to be dominant unstable mode, poor 
job when/where it is not!

•  Dangerous to extrapolate to future STs (NSTX-U, FNSF)!
•  Important to first establish where microtearing is unstable!
•  Simple extrapolations do not give answer!
•  Need first principles calculations  !


