

Supported by

Equilibrium reconstruction including kinetic effects and impact on MHD stability interpretation

Coll of Wm & Mary Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehigh U **Nova Photonics Old Dominion** ORNL PPPL **Princeton U** Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Tennessee **U** Tulsa **U** Washington **U** Wisconsin X Science LLC

Jon Menard (PPPL)

Z. Wang, Y. Liu (CCFE), R.E. Bell, S.M. Kaye, J.-K. Park, K. Tritz and the NSTX Research Team

56th Annual Meeting of the APS-DPP October 27-31, 2014 New Orleans, Louisiana

*This work supported by US DoE contract DE-AC02-09CH11466

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res. Kiev loffe Inst TRINITI **Chonbuk Natl U** NFRI KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP, Garching** ASCR, Czech Rep

Office of

ABSTRACT

Non-ideal plasma equilibrium effects such as toroidal rotation and the presence of fast-ions from neutral beam heating can play an important role in MHD stability for both ideal-wall-mode and resistive-wall-mode instabilities. Systematic comparisons between measured and predicted ideal-wall-mode instability characteristics (such as marginal stability threshold and mode real frequency) have been carried out and highlight the sensitivity of the results to the rotation profile and fast-ion density and pressure profiles. A key uncertainty is the potential redistribution of fast-ions by higher frequency Alfvenic instabilities. Analysis indicates that utilizing reconstructed total pressure and rotation profiles as opposed to using modeled/predicted fast-ion pressure and angular momentum profiles from TRANSP in the limit of zero anomalous fast-ion diffusion can yield better agreement between measured and predicted stability characteristics consistent with apparent redistribution of fast-ions. Reconstruction methodologies and associated stability implications will be discussed.

Pressure-driven kink limit is strong physics constraint on maximum fusion performance

Here we focus on ideal-wall mode (IWM)

Background

- Characteristic growth rates and frequencies of RWM and IWM
 - RWM: $\gamma \tau_{wall} \sim 1$ and $\omega \tau_{wall} < 1$
 - IWM: $\gamma \tau_A \sim 1-10\% (\gamma \tau_{wall} >> 1) \text{ and } \omega \tau_A \sim \Omega_{\phi} \tau_A (1-30\%) (\omega \tau_{wall} >> 1)$
- Kinetic effects important for RWM (see J. Berkery poster PP8.00064)
 - Publications: Berkery, et al. PRL 104 (2010) 035003, Sabbagh, et al., NF 50 (2010) 025020
- Rotation and kinetic effects largely unexplored for IWM
 - Such effects generally higher-order than fluid terms (∇p , J_{\parallel} , $|\delta B|^2$, wall)

• Calculations for NSTX indicate both rotation and kinetic effects can modify both IWM (and RWM) stability limits

- High toroidal rotation generated by co-injected NBI in NSTX
 - Fast core rotation: Ω_{ϕ} / ω_{sound} up to ~1, Ω_{ϕ} / ω_{Alfven} ~ up to 0.1-0.3
- Fluid/kinetic pressure is dominant instability drive in high- β ST plasmas

MARS-K: self-consistent linear resistive MHD including toroidal rotation and drift-kinetic effects

Perturbed single-fluid linear MHD: Drift-kinetic effects in perturbed Y.Q. Liu, et al., Phys. Plasmas 15, 112503 2008 anisotropic pressure *p*: $(\gamma + in\Omega)\xi = \mathbf{v} + (\xi \cdot \nabla\Omega)R^2 \nabla\phi$ $\mathbf{p} = p\mathbf{I} + p_{\parallel}\hat{\mathbf{b}}\hat{\mathbf{b}} + p_{\parallel}(\mathbf{I} - \hat{\mathbf{b}}\hat{\mathbf{b}})$ $p_{\parallel}e^{-i\omega t+in\phi} = \sum_{\alpha,i} \int d\Gamma M v_{\parallel}^2 f_L^1$ $\rho(\gamma + \textit{in}\Omega)v = j \times B + J \times Q - \nabla \cdot p$ $+\rho\left[2\Omega\hat{\mathbf{Z}}\times\mathbf{v}-(\mathbf{v}\cdot\nabla\Omega)R^{2}\nabla\phi\right]-\nabla\cdot(\rho\xi)\Omega\hat{\mathbf{Z}}\times\mathbf{V}_{0}$ $p_{\perp}e^{-i\omega t+in\phi} = \sum_{\perp} \int d\Gamma \frac{1}{2}Mv_{\perp}^2 f_L^1$ $f_L^1 = -f_{\epsilon}^0 \epsilon_k e^{-i\omega t + in\phi} \sum X_m^u H_{ml}^u \lambda_{\underline{m}l} e^{-in\widetilde{\phi}(t) + im\langle \dot{\chi} \rangle t + il\omega_b t}$ $(\gamma + in\Omega)\mathbf{Q} = \nabla \times (\mathbf{v} \times \mathbf{B}) + (\mathbf{Q} \cdot \nabla\Omega)R^2 \nabla \phi - \nabla \times (\eta \mathbf{j})$ $(\gamma + in\Omega)p = -\mathbf{v} \cdot \nabla P - \Gamma P \nabla \cdot \mathbf{v} \qquad \mathbf{j} = \nabla \times \mathbf{Q}$ $H_L = \frac{1}{\epsilon_{\iota}} [M v_{\parallel}^2 \vec{\kappa} \cdot \boldsymbol{\xi}_{\perp} + \mu (Q_{L\parallel} + \nabla B \cdot \boldsymbol{\xi}_{\perp})]$ Rotation and rotation shear effects: V Diamagnetic • Mode-particle resonance operator: $\rightarrow \lambda_{ml} = \frac{n[\omega_{*N} + (\hat{\epsilon}_k - 3/2)\hat{\omega}_{*T} + \omega_E] - \omega}{n[\omega_{*N} + (\hat{\epsilon}_k - 3/2)\hat{\omega}_{*T} + \omega_E] - \omega}$ $\overline{n(\langle \omega_d \rangle + \omega_E) + [\alpha(m + nq) + l]\omega_b - i\nu_{\text{eff}} - \omega}$ Transit and bounce Fast ions: analytic slowing-down f(v) model – isotropic or anisotropic This poster • Include toroidal flow only: $\mathbf{v}_{\phi} = \mathbf{R}\Omega_{\phi}(\psi)$ and $\omega_{\mathsf{E}} = \omega_{\mathsf{E}}(\psi)$

Real part of complex energy functional provides equation for growth-rate useful for understanding instability sources

() NSTX-U

Equilibrium force balance model including toroidal rotation

Force balance for species s: $\vec{J}_s \times \vec{B} = \nabla p_s + \rho_s \vec{v}_s \cdot \nabla \vec{v}_s + Z_s en_s \nabla \Phi$

Assume: $T_s = T_s(\psi)$ $v_{\phi s} = R\Omega_{\phi s}$ $\Omega_{\phi s} = \Omega_{\phi s}(\psi)$ B• above \rightarrow $n_s(\psi, R) = N_s(\psi) \exp\left(\frac{m_s \Omega_{\phi s}^2 (R^2 - R_{axis}^2)}{2k_B T_s} - \frac{Z_s e \Phi(\psi, \theta)}{k_B T_s}\right)$

Exact multi-species solution requires iteration to enforce quasi-neutrality \rightarrow simplify \rightarrow intrinsically quasi-neutral if all n_s have same exponential dependence. This approximate solution assumes main ions dominate centrifugal potential.

$$\vec{J} \times \vec{B} = \sum_{s} \nabla(n_{s}T_{s}(\psi)) + \sum_{s} m_{s}n_{s}\Omega_{\phi s}^{2}\nabla\left(\frac{R^{2}}{2}\right) \qquad 0 = \sum_{s} N_{s}(\psi)Z_{s}$$
$$n_{s}(\psi, R) = N_{s}(\psi) \exp\left(U(\psi)\left(\frac{R^{2}}{R_{axis}^{2}} - 1\right)\right) \qquad U(\psi) = \frac{P_{\Omega}(\psi)}{P_{K}(\psi)}$$
$$P_{\Omega}(\psi) = \frac{\sum_{s} N_{s}(\psi)m_{s}\Omega_{\phi s}^{2}R_{axis}^{2}}{2} \qquad P_{K}(\psi) = \sum_{s} N_{s}(\psi)T_{s}(\psi)$$

🔘 NSTX-U

Grad-Shafranov Equation (GSE) including toroidal rotation

Total force balance:
$$\rho \vec{v} \cdot \nabla \vec{v} \approx -\rho \Omega_{\phi}^2 \nabla R^2 / 2 = \left(\frac{J_{\phi}}{R} - \frac{FF'}{\mu_0 R^2}\right) \nabla \psi - \nabla p$$

 $\vec{B} = \nabla \psi \times \nabla \phi + F \nabla \phi$
Rotation-modified
GSE: $\frac{J_{\phi}}{R} = \frac{FF'}{\mu_0 R^2} + \frac{\partial p}{\partial \psi}\Big|_R \qquad \rho \Omega_{\phi}^2 R = \frac{\partial p}{\partial R}\Big|_{\psi}$
 $p(\psi, R) = P_{\rm K}(\psi) \exp\left(U(\psi)\left(\frac{R^2}{R_{\rm axis}^2} - 1\right)\right)$

LRDFIT reconstructions with rotation determine 3 flux functions:

- $U(\psi)$ based on fitting electron density profile asymmetry (not C⁶⁺ rotation data)
- P_K(ψ) and FF'(ψ) full kinetic reconstruction → fit to magnetics, iso-T_e, MSE with E_r corrections, thermal pressure between r/a = 0.6-1.

Study 2 classes of IWM-unstable plasmas spanning low to high β_N

- Low β_N limit ~3.5, often saturated/long-lived mode
 - $-q_{min} \sim 2-3$
 - Common in early phase of current flat-top
 - Higher fraction of beam pressure, momentum (lower n_e)
- Intermediate β_N limit ~ 5
 - $q_{min} \sim 1.2-1.5$
 - Typical good-performance H-mode, $H_{98} \sim 0.8$ -1.2

Impact of including rotation on q, P_{K} , P_{Ω}

- Black rotation included (from fit to n_e profile asymmetry)
- Red rotation set to 0 in reconstruction

🔘 NSTX-U

Reconstructions imply significant fast-ion profile broadening

- Black: reconstruction with rotation included (n_e asymmetry)
- Blue: measured thermal
- Red: recons. minus thermal, Orange: TRANSP (no FI diffusion)

significantly broader, lower than TRANSP calculation

 $U(\psi) = \frac{P_{\Omega}(\psi)}{P_{K}(\psi)}$ $\exp\left(U(\psi)\left(\frac{R^{2}}{R_{axis}^{2}} - 1\right)\right)$

NOTE: there is substantial uncertainty in P_{Ω} near the magnetic axis since U is indeterminate there, i.e. U could be much larger or smaller w/o impacting the density asymmetry fit

🔘 NSTX-U

than TRANSP calculation

11

Profiles after fast-ion density profile broadening

- Black: reconstruction with rotation included (n_e asymmetry)
- Blue: measured thermal, Red: recons. minus thermal
- Orange: TRANSP with FI density profile broadening (post-facto)

Because fast ion density is low, the impact of fastions on total toroidal rotation f_{ϕ} is weaker than impact on P_{0}

Implication: fast-ion redistribution or loss likely more important for pressure than rotation

Low β_N limit ~ 3.5: Saturated f=15-30kHz n=1 mode common during early I_P flat-top phase

MNSTX-U

Kinetic profiles used in analysis

Use broadened fast-ion *n*, *p* profiles (red curves) (consistent w/ reconstruction)

- q ≈ 2 in core
- D sound Mach number M_{s-D} → 0.8 on-axis → significant drive for rotational instability

$$\begin{split} \delta \hat{W}_{rot} &\sim \delta W_{\nabla p} \Rightarrow v_{\phi} \sim v_{th-ion} / \sqrt{q} \\ &\Rightarrow \Omega_{\phi} \tau_A \sim \sqrt{\beta_{thermal} / 2q} \end{split}$$

Predicted stability evolution using MARS-K compared to experiment

0 NSTX-U

APS 2014 - Menard

Fast ion broadening has significant impact on predicted stability

With fast-ion redistribution

Without broadening, predicted marginally stable β_{N} would be much lower than experiment

And predicted frequency would be higher than observed

Observed mode initial γ **consistent with kink/MARS-K**

Use Callen method

J. D. Callen et~al., Physics of Plasmas ${\bf 6},~2963~(1999)$

- MARS-K γ^2 linear in β_N near marg. stability
- Rate of rise of β_N tracked using diamagnetic loop
 - For first 0.5ms, growth
 is consistent with
 Callen hybrid γ model
 for ideal instability:

 $\xi = \xi_0 \exp[(\gamma_{eff} t)^{(1+\alpha)}]$

 α = 0.5 for ideal mode

SXR data also consistent with kink/MARS-K at onset

- MARS-K IWM kink eigenfunction largest amplitude for r/a = 0.5-0.8
- Simple/smooth emission profile $\varepsilon_0(\psi)$ can reproduce line-integrated SXR
- ...and can reproduce line-integrated SXR fluctuation amplitude profile
- ...and has same kink-like structure vs. time and SXR chord position
 - Although the "slope" of the simulated eigenfunction is shallower than measured... rotation or fast-ion effect?

🕦 NSTX-U

<u>Intermediate β_N limit ~ 5:</u> Small f=30kHz continuous n=1 mode precedes larger 20-25kHz n=1 bursts

🔘 NSTX-U

Kinetic profiles used in analysis

Fast ion pressure lower in this shot due to higher n_e Compute fast-ion from reconstructed total - thermal

- q ≈ 1.3 in core
- D sound Mach number M_{s-D} → 0.8 on-axis → significant drive for rotational instability
- But, expect weaker rotational destabilization since M_{s-D} similar, \underline{q} lower

$$\delta \hat{W}_{rot} \sim \delta W_{\nabla p} \Rightarrow v_{\phi} \sim v_{th-ion} / \sqrt{q}$$

Kinetic IWM β_N limit consistent with experiment, fluid calculation under-predicts experimental limit

Measured IWM real frequency more consistent with kinetic model than fluid model

WNSTX-U

IWM energy analysis near marginal stability elucidates trends from growth-rate scans

- Fast-ions in $Re(\delta W_k)$ = dominant destabilization in both shots
 - Balanced against field-line bending+compression + vacuum stabilization
- Shot 138065 has larger destabilization from fast-ions & rotation
 - Consistent w/ larger 55% reduction in $\beta_N = 7-8 \rightarrow 3.5$ (vs. 5.5 \rightarrow 4.2 or 25%)
- Kelvin-Helmholtz-like $\delta W_{d\Omega}$ and δK_2 are dominant δW_{rot} terms
 - Rotational Coriolis and centrifugal effects weaker

Summary

- Accurate q profile requires inclusion of rotation in reconstruction
- Significant fast-ion redistribution apparent in many shots in reconstructed kinetic and rotational pressure profiles (P_K, P_Ω)
- Rotation, fast-ion/kinetic effects can strongly modify IWM
 - Rotation near sonic \rightarrow potentially large reduction in with-wall marginal β_N
 - High fast-ion pressure fraction further reduces marginal β_{N}
- Initial calculations show good agreement between MARS-K predicted and measured mode characteristics: β_{N-crit} , ω , γ , ξ
 - Kinetic values/limits closer to experiment than fluid treatment
- Inclusion of wall stabilization, rotation, fast-ions (w/ broadening or loss) in MARS-K necessary to achieve good agreement between measured & predicted stability characteristics