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Introduction

» NUBEAM fast ion model = Monte Carlo + time dependent + axisymmetric tokamak

» Detailed physics for fast ions
» Classical guiding center drift orbiting
» Coulomb collision,atomic physics, anomalous diffusion
» heat, particle, torque, current sources
» Recent update to NUBEAM computes ICRH heating effects on fast ions
» Excited state atomic physics in NUBEAM
» Realistic geometry (shape of plasma, outgoing CX flux direction, neutral beam/s geometry)
» Computes 3d halo neutrals halo generation during neutral beam injection

Motivation For 3d Halo Simulation

» NPA diagnostic measured the energy spectra of escaping charge exchange neutral particles:

» ion temperature of the bulk ion component of the plasma
» energy spectrum of the beam-injected fast ion component
» the NPA flux is spatially localized by charge exchange on the beam and halo neutrals
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» To model 3d effects on plasma charge-exchange flux (NPA diagnostic)
» NUBEAM did not include 3d halo neutrals into NPA diagnostic simulation

Atomic Physics Data For 3d Halo Model

» Ground State Model, ADAS or PREACT
» beam stopping coefficients and partial cross sections CX, I, IE, IZ

» Hybrid Excited-Ground state, ADAS

» using beam stopping rate coefficients
» using ground state model to calculate contribution form CX, Il, IE, IZ reactions

» ADAS310 FORTRAN_DRIVER

» Parallelized in client-server model
» Resolves over hydrogen isotopes H/D/T

> Te # Tp # Timp
» Obtains contributions from CX, El, ll, andIZ
» Benchmarking with ADAS beam stopping data
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» Each neutral beam prescribed with own 3d box
» boxes can overlap in space
» each box has his own coordinate system (Xp, Yp, Lp)
» transformation matrices form machine’s Cartesian coordinate system to box’s Cartesian
coordinate system is defined.

» The position of the box is symmetrical to the beam’s axis

» 3d boxes are expanded to encompass halo, not just the beam

3d Halo Source

» Distinguish axisymmertic neutral populations vs. halo source

» NUBEAM axisymmertic neutral populations are:

» wall recycling and gas flow source (thermal)

» recombination (thermal)

» fast neutrals due to CX with axisymmetric populations

» thermal volume source due to axisymmetric fast neutral recapture by CX
» Independent control of CX-halo statistics: for ‘fast’ halo and for thermal halo

» Plasma toroidal rotation taken into account

3d Model -Key Concepts

» Sum over neutral tracks L;

k™ intersection zone
with volume V

. . . . I
» time a particle exists in each zone,  tj, = 2
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» Neutral density,  0njx = wj

» Deposition source,

Sampling New Generation Neutrals

» RNG to sample 1 ewia 22
P; (/) to launch new neutral track x; in space ‘

» Only CX results to halo, 56 g
fox = Y ; Ni < oV >8) 7a(1) is]

» RNG to assign species ID base on probability '
flo=N<oV>0 /S Ne <oV >%

» to get velocity V; at launch point X; 0o

'"THERMAL' - sample from Maxwellian distribution

'FAST' - FE2SI=1°"(R, Z_ Ejap, L, vy

» Apply(?) kinetic adjustment f,(<’;) = agZ(V,e,) Viert /) < oV >f;',2

Model Controls

» Niaunch - beam neutral tracks launched
» Nspiit,eo - halo neutral tracks launched in space
» Nspiit,in - halo neutral tracks in velocities space at each CX event
> Nsplitgeo : Nspiit,in = const
» Effective splitting reduced as wj — wmin
Wmin = lo / (Nlaunch * Nsplit)

Atomic Physics And Halo Source

» Source of neutral strongly depends on atomic physics
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» Sensitivity of E||B NPA diagnostic to atomic physics data
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NPA Emissivity Is About To Be Doubled
Due To 3d Halo
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Results And Discussion
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» 3d halo model is sensitive to atomic physics data as halo neutral density strongly depends on
the fraction of CX reactions in neutral deposition

» NPA simulations gave about same relative changes in CX neutral flux and emissivity
regardless atomic physics

» Cartesian grid size of beam-in-box increases statistical error

» Good statistics in beam neutrals and halo neutrals need to be applied to get reliable NPA
simulation result
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