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The application of 3D fields in Tokamaks is commonplace

- Tokamaks can greatly benefit from the application of 3D fields
- Edge Localized Mode (ELM) Control
- Resistive Wall Mode (RWM) Control
- Neoclassical Tearing Mode (NTM) Control
- Error Field Compensation

- Neoclassical Toroidal Viscosity (NTV) Torque Control

Focus for this talk will be on NTV torque control with applied 3D

fields.
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How do we design these coils?

- The design of 3D perturbative coils is dominated by engineering constraints
- Usually built after the machine
- Often placed outside the vessel for simplicity

- Physics focus is on toroidal spectrum control

- Shapes are simple :
‘ There is a better way! ‘

NSTX

'
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The NSTX Upgrade has motivated looking at new coils

- Part of the NSTX upgrade includes a set NCC design Existing coils
of in-vessel 3D perturbative coils (on passive

(NCC coils) Paies)

- The planned coils clearly have a great deal of utility.

- |f we could redesign them where would we like
to put them to control NTV torque?

- What do numerically optimized coils look like?

- How close can the NCC coils get us to the numerically optimized physics parameters?

Stellarator optimization can answer these questions!
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Stellarator Optimization Fits Model Inputs to Target
Physics Parameters

Input Parameters

These need to result in a good
match to these.
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What methods allow us to optimize our 3D fields?

- In the most general terms we're conducting a non-linear curve fit
- The input parameters to our equilibrium code serve as our curve coefficients
- The output from our equilibrium code (or secondary codes) fulfills the roles of our curve
- Thus many techniques are available to us:

- Gradient descent, Newton’s method,_Levenberg-Marquardt, Genetic Algorithms,
Differential Evolution, Particle Swarm, Simulated Annealing...
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What tools allow us to optimize for NTV torque control?

- The stellarator community has developed STELLOPT! for this
exact task

- STELLOPT relies on VMEC

- Lacks experimental validation at this level

- The IPECOPT code utilizes experimentally validated models

- The IPECI2l code computes the perturbed ideal MHD equilibrium model
- The PENTEI code then calculates the NTV torque based on this perturbed equilibrium

- The IPECOPT code reuses the optimization machinery of STELLOPT

- Highly modular so new targets may be easily added
[1] D.A. Spong et al. 2001 Nucl. Fusion 41 711

[2] J-k Park et al. 2007 Physics of Plas. 14 052110
[3]1 N.C. Logan et al. 2013 Physics of Plas. 20 122507
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Ideal Perturbed Equilibrium Code (IPEC)

-+ |[PEC solves the linear ideal perturbed equilibrium equation

Vép=38jxB,+ j, xOB

- Utilizes the Output from DCON NSTX B-Normal (n=1 optimization)
- 2.5

- Inverse representation (single toroidal mode number) L
1.5

- Utilizes virtual casing technique

- Input: B-Normal on boundary

B.n[G]

- QOutput: Plasma response
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Perturbed Equilibrium Nonambipolar Transport (PENT)

- PENT solves for neoclassical toroidal torque

- Utilizes the IPEC equilibrium

-+ Solves the following integral equations

% [@wNT [dAd, |87 [,

\/_B

[a)(p + @, (x - ;ﬂxwze )
EKTl —

i[(l—O'nq)a)b +n(a)E + a)D)]— vV,
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An IPEC based optimization code (IPECOPT)

- Calculates a least squares fit of IPEC input parameters to target
physics parameters

2
m
. Based on STELLOPT %2 - 2 (Yl - yi)
o 2
: L : i=1 Gi
- Multiple optimization techniques
- Targeting NTV torque as calculated by PENT m: number of targets

Y: target values

- Fixed and free boundary optimizations

y: simulated values

sigma: weights
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An NSTX-U equilibrium provides a basis for optimization

- The simulated NSTX-U equilibrium had the following properties
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Can we optimize for core torque with n=1 fields?

- Pitch non-resonant fields seem to drive core torque
- Torque inside rho 0.5 maximized (outside minimized)

- Total plasma field was optimized for n=1

_ NSTXNTY Torque Optimization (n=1) =7 NSTX IPECOPT N=1 B-Normal
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What about edge torque?

- Driving edge torque produced a more complex mode structure

- Maximized torque outside of rho = 0.5 (minimized inside)

- Total plasma field was optimized for n=3
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Can we mimic such a spectrum with the NCC?

- About twice the edge torque seemed possible.

- Partial-NCC and mid-plane coils used

- No numerical optimization performed

1.0
n=3

_ s Partial NCC (2x6-only) 4kAt,
® Midplane coil 4kAt
z | Total torque ~2Nm
o
g 0.4
5
02

O'%.O 01.2 01.4 01.6 01.8 1.0

p Work by J.K. Park
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Total B-field optimization motivated continued work

- Demonstrated that edge vs core torque may be controlled

- Total response appears to be field line pitch crossing

- Appears possible to reproduce with simple coils

- Motivated vacuum B-field optimizations (B-normal spectrum)
- Larger target torques were considered

- Here vacuum B-normal fields were optimized

'
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Core torque control with n=1 was reexamined

- Larger core torque requires larger field amplitude

Pitch non-resonant behavior still present

Higher harmonics present

NSTX-U Core Vacuum Optimization (n=1, C94)
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Vacuum fields were used to drive edge torque

- Relatively simple mode spectrum at larger torque amplitude

- Edge torque targeted (~ 1 [Nm])
- n=3 toroidal harmonics drive some edge resonances

NSTX-UNTV Torque Optimization (n=3)
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IPECOPT can improve FOMs for NTV and RMP with NCC +
mid-plane coils

- Figures of merit (FOMs) for NTV and RMP were estimated without
mid plane coils

- IPECOPT can be the best choice to perform 3-coil optimization and
iImprove 2-coil FOMs

Figures of Merit Favorable values MID 12U 2x6-0Odd 2x12
F, .= Lary .
EF (n=1) V=R 8B High F 0.07 0.13 1.24 1.24
P 5 <0.85
F — Bactive .
RWM (n=1) B = High F 1.25 1.54 1.61 1.70
Bno—wall

Al F =TNTV(wN<O'5) .
NTV (n>3) T <)) | | Wide 1.00 1.44~6.08 1.75~11.33 6.38~59.4
High F 0.25~0.30 0.31~1.04 0.43~0.77 1.18~3.53
(Cvacuum,wN=O.85 )
RMP (n>3) Fy_c = .
NTV Wide 1.00 2.20~12.3 10.4~17.4 888~14400

Table courtesy of J.K. Park
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NCC+RWM coll currents optimized for core torque

- It is possible to drive meaningful core torque using the
planned coil set with n=1 fields

- NCC + RWM coils optimized (6 free parameters) 3 o
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- Amplitude and phase of coil currents were optimized
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Difficult to drive edge torque with n=1

- The n=1 spectrum appears to drive edge torque

« NCC coils were over-driven in amplitude

P 7
Oy " lllll " ‘.

" L
uI---""f

- Difficult to drive edge torque over core with n=1
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Edge torque driven with optimized n=3 coil currents

- Edge torque easily driven by n=3 fields

RWM coils only have 2 phases for n=3

NSTX-U N=3 Edge Coil Optimization (NCC+RWM)

NCC coils provide the majority of the torque drive
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Limited ability to control core torque with n=3

- Broad torque density is driven

- n=3 fields do not penetrate as well

- Edge resonance control becomes key

NSTX-U N=3 Core Coil Optimization (NCC+RWM)
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Optimization of coil currents motivated a validation

- DIII-D C-caoll rotation scan experiment

-+ C-coll phase and amplitude scan performed (2D parameter space)

- |IPEC/PENT to conduct similar numerical experiment using SURFMN error field model
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IPECOPT agrees with experimental results

- Optimization of C-colil currents to minimize total torque

- Optimizer agrees with - T -
mapped space 0.5} S ]
é * . . . .0 .0 |
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Conclusions

- The IPECOPT code can optimize applied 3D field for NTV torque

- Total or vacuum field optimization demonstrated for NSTX-U
- Core or edge torque profiles may be targeted

+ Cail current optimization demonstrated for NSTX-U as well

- Initial experimental validation is underway

- Rotation scans on DIII-D seem to agree with IPECOPT predictions

- Future work will focus on coil design and target expansion

- Separate resonant mode drive from NTV torque drive

- Stellarator tools for coil design

'
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Design of coils from optimized spectrums is the next step

- Stellarator coll design requires the specification of the plasma B-
normal on a plasma surface

- This is already provided by the IPEC code

- Codes like NESCOIL!" calculate the current potential on an
encompassing surface which shield out that plasma B-normal

- This provides a sanity check on possible coils.

- Code such as COILOPT++2l allow us to design discrete coils with
engineering constraints

- This includes coll location and shape constraints.

[1] P. Merkel 1987 Nucl. Fusion 27 867
[2] J. Breslau (under development at PPPL)
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The NSTX-U Non-axisymmetric Control Coils (NCC)

6 existing
RWM coils
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Can we preform a similar analysis for an ITER
equilibrium?

- 15 MA H-mode scenario at full burn

ITER GEQDISK I5MA Burn
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Core torque difficult to drive with n=1 in ITER

- 12 dimensional parameter space should provide
greater flexibility

- Assumed very low rotation profile

VC
EFC

- Amplitude of applied fields within coil limits [A-t]
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