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Li Films in NSTX

Lithium improves plasma performance and protects 
underlying substrates

• Improved performance:
– Increased ne, WMHD

– ELM reduction

• Li protects even fragile 
porous substrates from 
high heat fluxesa,b

• Liquid Li is an alternative 
to W for a DEMO PFC
– Self-healing under plasma 

bombardment
– Eroded material can be 

replenished by flow
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D.K. Mansfield  et al., JNM 2009
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aG. Mazzitelli et al., FED 2010
bT. Abrams et al., JNM 2013
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• Li erosion rate scales with temperature 
– Evaporation (Langmuir Law)
– T-dependent sputtering (PISCES-B, IIAX, DIII-D)

• Thermal-spike modela:

Previous results on flow-flux devices suggest Li erosion may 
be unacceptably high at elevated temperatures
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aJ.P. Allain et al., Phys Rev B 2007
bR.P. Doerner et al., J. App. Phys. 2004

A,B: Fitting parameters
k: Boltzmann's constant

• Adatom-sublimation modelb:
ሻࡸࢀሺࢅ ൌ

ࢊࢇࢅ
  ܘܠ܍� ܍ࡱ

ࡸࢀ
Yad, A, Eeff: Fitting Parameters

Atomic Li Yield vs. Li Temperature
Measured on PISCES-B

R.P. Doerner et al., JNM 2001
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D+

Many processes are involved in the D-Li PMI
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D diffusion in Li has been characterized using molecular 
dynamics (MD) simulations 

• Recent MD simulationsa have calculated D diffusivity in Li
vs. temperature and D/Li concentration (ȕ)
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D diffusivity in Li • Diffusion coefficients 
decrease strongly
vs. D/Li concentrations

• Evidence of LiD solidification 
for 100% LiD
– LiD melting temp: 965 K

(1000/Tmelt = 1.04)

aM. Chen and E.A. Carter, Nuc. Fusion, in prep.
bH. Moriyama et al., JNM 1992
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Time evolution of Li:D concentration can be determined for 
any plasma/surface conditions

• Solve 1-D diffusion equation with time and space-dependent 
diffusion coefficients

• D assumed implanted uniformly in top 5 nm of material
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Surface D / Li concentration  
after D fluence of 1023 m-2




D+

ࢼࢊ
࢞ࢊ ��ൌ x0

xN

Li/
LiD

࢞
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D bombards 
surface faster than 
Li can absorb it
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How does D concentration on Li surface affect sputtering?

• D absorption reduces Li sputtering in two ways:
– Preferential sputtering: less atoms available to sputter
– Chemistry: SBE* is higher for LiD (2.26 eV) vs. Li (1.67 eV)

• D atoms can adsorb on a Li surface in several different sites
– Motivates two different models of a Li/LiD surface
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*Assumed equal to heat of sublimation

D monolayer on top surface

Underlying Li/LiD material

Homogenous Li/LiD material
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Sputtering on a Li/LiD surface can be simulated with 
SDTrimSP binary collision approximation (BCA) codea

• Preferential sputtering is directly incorporated
• Chemical effects simulated by interpolation of SBEs:
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Homogenous 
Partial D layer on surface

SDTrimSP simulations of
Li sputter yield vs. D/Li fraction

܍ ܑۺ ۲ܑۺ

• D impurities in Li results in 
strong reduction of YDĺLi

• Reduction for 100% LiD:
– ~10x in homogeous case
– ~40x w/ D monolayer on

LiD surface

• Empirically fit f(ȕ)
aA.Mutzke, R.Schneider, W.Eckstein, 
R.Dohmen, SDTrimSP Version 5.0. IPP Report 
12/8, Garching, (2011)

20 eV D+ĺLi
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Evaporation of LiD in suppressed relative to pure Li

• Li vapor pressure above Li/LiD mixtures is reduced relative to pure Li

• Reduction factor is independent of temperature

• Empirical fit formula:
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ܘ܉ܞ܍ ࡸ
ࡰǡࡸ

ࡸ ࡸ
ડܘ܉ܞ܍: Evaporative Li flux
Li vapor pressure :ࡸ
Li mass (6.941 amu) :ࡸ

E.E. Shpil'rain et al., 1987

Mixed-material Li/LiD
vapor pressure vs. pure Li

ࡰǡࡸ
ࡸ

Ǥૠ
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Corrected Li erosion model is a function of Li temperature 
and D concentration in the Li
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ડࡸ ǡܑۺࢀ ǡࢼ ડࡰା ��ൌ �� ડࡰାࢌሺࢼሻ
ܔܔܗ܋ࢅ
  ࢊࢇࢅ

  ܘܠ܍ ࢌࢌࢋࡱ
ࡸࢀ

  ǡࡸࢀ ࢼ
ࡸࢀࡸ࣊

Total Li erosion
(m-2 s-1) 2/3 of 

sputtered Li is Li+
(re-deposited)a

Thermally-enhanced
sputtering 

(adatom-evaporation model)

Evaporation

• Assume Yad and Ycoll are both 
reduced by f(ȕ)

– Average of the homogeous LiD
and surface D monolayer models

• Adatoms on a liquid?
– Have been observed in MD 

simulationsb

– A is related to adatom lifetime Ĳ
– ĲLi >> ĲBe (less vacancies on liquid)

Mixed-material Li/LiD
erosion yield vs. temperature

aK. Nordlund et al. Lett. Nat. 1999
bJ.P. Allain et al., Phys. Rev. B 2007

D/Li mixed-
material 

reduction 
factor

Evaporation

Thermal 
sputtering

BCA 
sputter-

ing
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Model tested and analyzed in Magnum-PSI 
linear plasma device

• īD+ د 2*1024 m-2s-1, Te د 3 eV, ne د 8*1020 m-3

• 5-10 s pulses, B = 0.25 T at target, 20-40 V bias
• Normal incidence: no magnetic pre-sheath
• Two sample types (both 2.5 cm diameter)

– Evaporated Coatings (� 1 ȝm)
– Shallow Li cups (0.1 – 1.0 mm)

11

G. De Temmerman et al., FED 2013



NSTX-U APS DPP – Erosion/Re-deposition of Li and B, T. Abrams (10/29/2014)

New procedure developed for loading 0.1-1.0 mm thick
Li targets in Magnum-PSI sample holder
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1. Li melted into sample wells 
inside Ar glove box

2. Sealed with SS shim stock 
covers & heat-seal mylar bags

3. SS cover remained on sample 
during mounting

4. Li exposed to atmosphere for 
20-30 s between cover 
removal & vessel pumpdown

5. Ar plasma discharges used to 
remove oxide coating from Li

Four Li samples melted into 
wells on a SS prototype plate
(two with shim stock covers)

Liquid Li
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Diagnostic suite provides measurements of plasma ne/Te, 
Li-I impurity radiation, and sample temperature
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Macroscopic melt motion observed during Ar plasma 
cleaning of thick Li coatings

• Quickly reduces coating from 
its initial value of 500 ȝm

• Resulting thickness of Li 
coating measured for a 
sample exposed to a single 
Ne plasma shot
– Measured via confocal 

microscopy
– Assumed that coating expands 

along z direction only during 
conversion to Li carbonate

• Motivates modeling of ȕ(t) for 
reduced Li thicknesses

14



NSTX-U APS DPP – Erosion/Re-deposition of Li and B, T. Abrams (10/29/2014)

Mixed-material Li erosion model can be tested by varying 
1) ion species    2) total D fluence

1. Measure Li erosion rate during Ne plasma bombardment
– Ne is not retained in or chemically reactive with Li
– Thus model predicts no reduction in erosion rate at high fluxes

2. Measure Li erosion rate
as changes dynamically
Ȃ ሻݐሺߚ can be predicted using 

1-D diffusion model for D in Li
– Significant melt motion led to

uncertainty in time evolution
of Li thickness 

– Time evolution of ȕ for various
thicknesses were tested

15

Time Evolution of ۲ࢣ ,ࢼା, and ܑۺࢀ
during typical Magnum-PSI discharge

Tmelt = 180 °C
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Li-I emission rates can be interpreted using atomic data from 
ADAS collisional-radiative model*
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*H.P. Summers, "Atomic Data and Analysis Structure User Manual," 2004.  (www.adas.ac.uk)
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Collisional-radiative model ~0.1

Steady-state ~10-4

No recomb./CX 0.01 – 1

No ŏ impurity transp. 0.5 – 5

No second. elect. emiss. 10-20

No radiation trapping 1 – 10
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Li yields inferred from Li-I emission measurements
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• Solve Li0 continuity equation with boundary condition:

ߘ ڄ ݊୧ݒ୧ ൌ െ݊୧݊ܵ ݊ݒ ���������ൌ �� ܻ߁ା
ݖ ൌ Ͳ

• Solve for  
• Model for Li-I photons / m2 s:

ࢋࢊǡࡸܫ ൌ න �ࢠࢊ�ࡸࡼࢋࡸ
ࢠ



࢙ࢇࢋǡࡸܫ ൌ ࢋ࢞ષࢀ
࣊

࢙࢚ࢎ
࢙ ࢙ࢇࢋ

• Set ǡௗ ǡ௦ infer ࡸ

• Axially averaged measurement:

Axially average Li-I emission

Ionization rate coefficient (ADAS)

Photon 
emissivity 
coefficient 
(ADAS)

vLi = 5200 m/s (1 eV)
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Li yields measured during Ne plasma bombardment are 
greater than Langmuir Law evaporation
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• Suggests erosion model is 
valid for H-free Li films (ȕ=0)

• 20 eV NeĺLi erosion much 
lower than 40 eV
– Model predicts T-dependent 

sputtering is independent of ܧேା
– Possible near-threshold effects 

for Ne

• 40 eV Ne ĺLi consistent with 
previous results for He ĺLi

Atomic Li Yields ડࡸȀડࢋࡺା
vs. Li Temperature

Solid line: Thermal-spike or adatom model 
(indistinguishable) 

Dashed line: Evaporation only
Error bars: Experimental measurements
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Li yields measured during D plasma bombardment compared 
to predictions of adatom mixed-material model
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• Error band is distance between 
homogenous & partial D 
monolayer surface models

• Adatom mixed-material model 
captures quantitative evolution 
of Li erosion rate

• A priori assumption that Li 
thickness reduced to 25 ȝm

Atomic Li Yield ડࡸȀડࡰା
vs. Li Temperature

20 eV DĺLi
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Numerous physics possibilities have been considered
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• Recomb./CX small, but would imply an even lower yield

• īD+ measured fairly constant 4.0-20 mm from target

• Drifts are almost entirely in azimuthal direction

• Results insensitive to vLi (strong ionization)

• Transmission of optics measured before/after experiments

• Self-sputtering is small, would also imply even lower yield
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Measured re-deposition fractions R for Li-coated TZM Mo are 
close to unity, as predicted by modeling
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• At r=0: Ĳ is the time when 
Li is depleted from sample 
center (Li-I emission Ļ) 

• A r=rmin: Ĳ is the full 
length of plasma 
discharges on sample Note Suppressed Zero

2*rmin

Sample ne,peak Te,peak Li Thickness Duration
TZM-Li-1 2.4*1020 m-3 1.7 eV 190 nm 56 s
TZM-Li-2 2.6*1020 m-3 1.5 eV 190 nm 56 s
TZM-Li-3 3.5*1020 m-3 1.5 eV 190 nm 42 s

ȡLi = Initial Li areal density

Photograph of Li sample immediately 
after removal from Magnum-PSI
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Preliminary measurements of boron erosion under high-flux 
D plasma bombardment have also been performed
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• 300 nm B layers sputter-coated on TZM Mo 
• No strong B lines in visible: use 249.7 nm line
• Imaged with PIXIS 2040-B camera, ~4 Hz, 1 mm2 res.
• Similar analysis applied to data using ADAS tables



NSTX-U APS DPP – Erosion/Re-deposition of Li and B, T. Abrams (10/29/2014)

Preliminary measurements of boron erosion yield are 
significantly higher than on ion- beam experiments
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• Ȝiz,B >> Ȝiz,Li
– "Smearing" of erosion data
– Can capture total B outflux

w/o spatial resolution

• No T dependence, but
not expected until 
> 0.5*Tmelt

a,b

(Tmelt,B = 2076 °C)

Surface-averaged B yield ડ۰Ȁડ۲ା
vs. B Temperature

• YB >> previous measurement on ion beam device (0.004)
– SBE of sputtered coating may be lower than bulk B
– Conversion to boron oxide (B2O3) may have occurred

– Yield could be enhanced via chemical sputtering
– YB2O3 / YB § 15   (TRIM.SP)

aR.P. Doerner et al., J. App. Phys 2004
bH. Maier et al., PSI 2014



NSTX-U APS DPP – Erosion/Re-deposition of Li and B, T. Abrams (10/29/2014)

Predictions performed of how long a 100 ȝm Li coating will 
last under D plasma bombardment in NSTX-U divertor

• Series of 5 s pulses with 
thermal evolution:

• Li lifetime calculated by 
solving for W:

• Note: R calculations are 
for linear plasma; Rmax is 
specified as 0.99
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ݍ ൌ ͳ
ʹ ݊ߛ ܶ�ୱߠ���
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Conclusions
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• Adatom-evaporation mixed-material model developed to 
predict temperature-dependent Li+D erosion rates

• Techniques for inferring time and spatially dependent 
erosion yields developed using ADAS atomic phys. data

• Erosion yields of Li and B coatings on TZM Mo measured 
during high-flux bombardment on Magnum-PSI

• Model captures quantitative dependence of Li erosion 
yield for thick mixed-material Li/D layers

• B erosion measurements using B-I emission performed 
for the first time using custom-built optics system


