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ABSTRACT:

Nonaxisymmetric effects become important in strongly-driven CHI in NSTX
simulations using NIMROD. An nz1, high m mode excited in simulations of
injection and flux closure can significantly impact the injected poloidal flux
evolution and closure.’2 In nonlinear simulations, the mode velocity and
magnetic perturbations occur in “bursts;” in previous, lower temperature
work the mode was weak and not bursting, with little effect on the injection.!
The mode is excited just outside the poloidal flux bubble with axes of
poloidal velocity vortexes and magnetic flux surfaces aligned along the
magnetic field. Their width is approximately that of the current layer in the
surface of the bubble. The instability significantly broadens the current layer
and apparently is driven in part by currents resulting from expansion of the
injected poloidal flux. Linear simulations starting from nonlinear, purely
axisymmetric simulations or from the axisymmetric parts of
nonaxisymmetric simulations yield the linear eigenmodes and sensitivity to
plasma parameters. Ongoing analysis to identify the driving mechanism(s)
for the instability is constrained by these linear results.

1E B Hooper, et al., Phys. Plasmas 20, 092510 (2013).
2F Ebrahimi, et al., Phys. Plasmas 20, 090702 (2013).
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Field-line-following instability during simulations of CHI
— Seen in resistive MHD simulations (NIMROD)
— Forms on the surface of flux-bubbles during injection

* The mode had little effect on injection in weakly-driven (I, = 2-10 kA), low
temperature (T< 25 eV) plasmas used to compare with experimental results

 Studied here in simulated, strongly-driven (I;,; = 15 kA) plasmas with reduced
impurity radiation and reduced cross-field thermal conductivity
— Higher T (~50-100 eV) in the current channel; lower (~5 eV) outside
— The mode is stronger and affects the evolution and closure of the flux-bubble

CHI schematic Flux bubble Instability
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Axisymmetric (n=0), strongly-driven simulations with high T (in current
channel), low thermal conductivity — X-point forms during injection
— X-point is in cold (5 eV) plasma outside current channel

— Plasma divides into two “lobes”

t = 1.3 ms after start of t = 3.0 ms after start of
injection injection
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Non-axisymmetric (n=0, 1, 2) simulations — The axisymmetric poloidal
flux distribution is more like that in low-temperature simulations
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Non-axisymmetric (n=0, 1, 2) simulations with high T (in
current channel), low thermal conductivity

— Symmetry-breaking mode prevents X-point formation seen in
axisymmetric simulations
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The jagged structures with n =1 and n =1, 2 result from relaxation
oscillations of the n=1 mode
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Non-axisymmetric (n=0, 1, 2) simulations with high T (in
current channel), low thermal conductivity (cont.)
— Plasma evolution (toroidal current, internal energy)
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The jagged, internal energy structures are due to the instability. During dips in
n=0,1 & n=0,1, 2 internal energy (at = 8 ms) the mode is low-level and not bursting
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Kinetic and magnetic energies show a bursting
characteristic correlated with the injection current

log,o(KE (J))
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During the dips (at = 8 ms) the mode is low-level and not bursting
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The mode consists of eddies in velocity and magnetic field
The real parts are shown
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0 current flow

Current is generated outside the flux-bubble where

the field lines are bent by the expanding bubble

The instability broadens the n
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Linear analysis — used to identify the instability driving
force

Two approaches have been used to determine the linear-mode characteristics

¢ Linear characteristics have been determined by using NIMROD

— Starting from a non-linear axisymmetric simulation, a linear mode is
excited from noise

— The code parameters (e.g. viscosity, resistivity) and results (e.g. flow)
were varied to determine the sensitivity to simulation parameters

e Simple slab models were used to examine the physics driving the mode

Conclusion: The mode is primarily an ideal, current-driven instability
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NIMROD — The linearized n=1 mode has a rapid growth
rate (t;,, = 1.5 ps)

log,,(Kinetic Energy) vs. t
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The n=1 mode grows without the n=0 flow velocity

Option in the code: The n=0 velocity field can be set to zero in the
linear study

e Mode grows when the n=0 flow is zeroed
- V., = 10° m/s (<< v,, c,) away from the injection slot

e Growth rate — reduced from 6.45x10° s~ to 2.88x10° s1

Also: The mode structure lies on the outer edge of the n=0 flow field

¢ This is where the n=0 component of current is strongest

Conclusions:

e The mode does not need the n=0 velocity field to grow,
although it does contribute to the mode growth rate

¢ The mode is primarily current driven
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Linear-instability calculation: MHD input parameters
(e.g. viscosity, resistivity) can be changed to evaluate
the sensitivity of the linear mode

Parameter Base value | Testvalue | Growth rate (s})
Base calculation* 6.45x10°
Kinematic viscosity 150 m?%/s 15 m2/s 8.79x10°
Resistivity 411/Te3/2 1x104/Te3/2 9.48x10°
(magnetic diffusion) m?/s m?/s

Particle diffusivity 10> m?2/s 10 m?2/s 5.30x10°
(holds n = const)

*All n=0 plasma quantities are constant (slides 5-8) except as listed above

Conclusions:

¢ [nstability growth is insensitive to the numerical
parameters used in the calculation

e Dissipation is not needed — The mode is primarily ideal
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eddies in

The linear mode structure is similar to the non-linear

velocity and magnetic field are generated by the instability

Re(JR-JZ)

Re(BR-BZ)

Re(VR-VZ)

0177000

" eeen, 1]
-~ c
. ———- . R
.. 3
S oTTTEIII S,
———— ST . e -
e e a4 o . T "= —————

e e e ———— cscs o= e .., 2}
T T —_————— T - .z
.- S ITLLUN TTTm——— cae
TTITIiln S Tme——————- s
Bt s ——

e "o e mm

.o i e T M
N R

. ———— .y

.. ——— -

-
“ .

QI_lin77000

n=

g
Y

04

. . ]
AL
PR I T S S
R J . e
- sy e
LIRS LN et ————— - .
— AN N N N . .-Illlll'll“.
i T T T R LT
N ———— SNSSS A G T T s s s
SNNS————— NN ——— .
A it ~ - l'.‘
. . . - - ————
. ‘ . . c e s -

n=qllin/77000
05

R (m)
=

-
N - -
N Ve oe
SeSssa .-
. ...
. -

I.

04
¢

Energy
Sciences

.
Fusion

[k



Analytic Modeling: Instability drive

Ideal MHD Energy Principle — term proportional to j,

W, = -% [, dvs ((& xB) B, |

=%fper|B-(§j xB,,)

The term in parenthesis is proportional to the negative of the

electric field:

. 9E -

E = _EXBU-
This term is negative when the volume-averaged J”f)-fi is
positive —— In the direction to extract energy from the current
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Slab Model — example of current sheet

Assume current is force-free and
constant in the slab
Model the downward current along

y } S the inside leg of the flux-bubble
: : (ij < 0)
Outside 'Current' Inside _
bubble | & | bubble B, =B, x<-a
Flow _ s _
AB,=0 : : AB =0 B =B Mol (x + a) a<x<a
| | B =Bzo—y0j0y(2a) x>-A/2
| |
| | aBy B
| | Y _ __zo ;
! ! ox B HoJyo
® | | | — yo
-a 0 a _ )
B, X B = \/_2'“ofyoBzo (Za) X <—q
By=\/2,u0jyoBzo(x—a) —as<x<a
By =0 xX>a
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Slab Model — Equilibrium and perturbed equations

Equilibrium

P, = const.
v,=0 Neglect flow
B,-B 2+B, (x)§ B, <<B,

i, =jOZ(x)2+j0y(x)§' j,"B,=0

Perturbation
op=0
V-6v=0 incompressible
p0@=6ijo+ij5B
at
d0B
a—t = V X (6V X BO)

V x 8B = 1,0j
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Slab Model — Eigenmode equation

After considerable algebra:

2
k-B k-B o (B kB
e S
with
ov = —iw&(x)exp[—i(a)t —k,y- kzz)]
k=k'B,/B,_=k +k B (x)/B, k. <<k, B, <<B,

2 2
V,= BOZ/Iuopo

Set
V-£§=0 and § <<§&,, §y — and eliminate §_

0 1 0 2 2 . 2 2 2
a_an_x(Q §)-kE =0 with Q@ -’k
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Slab Model — Eigenmode equation (cont)

Define ¥=Q¢ so

in{ia—w}—kzw =0

Y

or

2 .
azw+ 2k\lkyvfl HoJo, BZ,U

ox*  w’—k'v, B, 0x

2
~ k=0

Assume j, is constant and neglect the x-dependence of k|,

Normalize: x=af¥, k=k/a, o=&v,/a and u,j, /B, =j/a

The solutions for ¥ are

=A™ F=-1
Y= Azeﬁllgyi + /136[521;")E -l<x=<1 with §, found from the Eq for
p=Ae i>1
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Slab Model — Solution

Apply continuity and jump conditions at X ==1 to find the dispersion condition

Linear simulations: inner leg

|
I
I
I
I
: a=004m, R=04m
k. =a/R=0.1
B,~12T
B =0.15T

y0

_B,./B, ~08
2

Y

P!
U
) bS]

[
- 7 B,/ u,J
2 2 2 2.2 - -

1) —k” =(a) —kHvA)—Ozkvoz0

"4

In this simple model: Instability for all # >a minimum value where &? = /EHZ
e For strongly-driven injection the mode is clearly unstable
* The value of j determines the minimum value of k, for instability
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Slab Model — Eigenmode —> 2 solutions with off-set eddies
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Summary

At conditions where the plasma current is confined to a narrow
channel at the surface of the expanding flux-bubble:

e A field-aligned instability is generated
e Linear analysis and simulations strongly suggest it is predominately
an ideal, MHD current-driven mode

When the mode is low amplitude, it has little effect on the plasma
evolution

At large amplitude the mode undergoes relaxation oscillations and
significantly affects the evolution of the injected poloidal flux

e |t prevents the formation of closed flux regions during injection
e |t expands the current channel outside that due directly to the
injection
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