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Introduction

 The determination of techniques for mitigating the heat flux ol
onto plasma-facing surfaces is a major goal of current
tokamak research. sk

* High heat fluxes to the walls push the limits of present-day
engineering materials and active cooling technologies.

 ITER — expected that 70-90% of power will need to be
radiated with standard single x-point divertor.!

z[m]
o

* NSTX-U — peak heat fluxes over 20 MW/m?2 have been
predicted in 2 MA, 12 MW NBI-heated discharges.? Long
pulse limit for graphite PFCs is 10 MW/m2.

-1F

* Novelsolutions to the heat flux problem are needed. 2
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IKotschenreuther M. et al 2007. Phys. Plasmas. 14 072502.

r [m]

2GrayT.K. et al 2011. J. Nucl. Mater. 415 S360.

NSTX-U Poloidal Cross-Section
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Divertor Heat Flux

PkageOatL (1 T frad) fdiv sin (eplate)

dpeak = QﬁRstrikefexp)\q

Apeak peak heat flux at the divertor strike point ( Psrike/ Awetted )
P3oL input heating power to SOL

frad fraction of radiated power

f div fraction of power to divertor leg of interest

0y1ate poloidal angle between divertor plate and magnetic field line
R irike major radius of divertor strike point

1 s flux expansion

Aq width of heat flux profile in SOL

Stangeby, P.C. The Plasma Boundary of Magnetic Fusion Devices. Bristol: |IOP Publishing Ltd, 2000.
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The Need for High Flux Expansion

Pheat= 12MW, Ip = ZMA, fdiv= 0.5, Rdiv - 0.5, A.qmid= 3mm

Maximum pulse length [s]
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Menard J.E. et al 2012. Nucl Fusion. 52 083015.
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Advanced Divertors (1)

* Investigation of high flux expansion divertors is a major near-term research goal of the
NSTX-U program.

* Two novel magnetic geometries have proven to be attractive candidates for steady-state
(and potentially ELM transient) heat flux mitigation — snowflake and x-divertor

* These divertors have the following magnetic properties?:
— higher poloidal flux expansion (compared to single x-point divertor)
— longer x-point connection length
— higherdivertor flux tubevolume

— Fourseparatrix branches and strike points

* SNOWFLAKE — characterized by a second-order poloidal field null (or two closely-spaced
first-order nulls)

* X-DIVERTOR - snowflake-like with the additional property that the secondary null is located
in the vicinity of the strike point

1Soukhanovskii V.A. et al 2012. Phys. Plasmas. 19 082504.
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Advanced Divertors (2)
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Advanced Divertor Control

* NSTX experiments demonstrated the need for active magnetic control of snowflake divertor
configurations.!

* Advanced divertor control presents new challenges — identification and control of multiple
x-points and other parameters

* Snowflake / x-divertor tend to be topologically unstable — sensitive to changes in OH coil
current, plasma profiles. (to be further characterized)

* Aim is for near-term implementation of the following control capabilities at NSTX-U:
— multiple x-point locations (for snowflake divertor)
— strike point location (for x-divertor)

— flux expansion independent of x-point locations

1Soukhanovskii V.A. et al 2012. Phys. Plasmas. 19 082504.
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Snowflake Control System

Targets +
O =, Snowflake Controller

P, 0,7c, 2

Snowflake Tracker

BT‘, BZ
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Snowflake Tracker (1)

e Consider the Grad-Shafranov equation with zero
current density:

a< 1 a¢)+a2¢:

(R+ x) 0

Oor \ R+ x Ox Ov?

where the coordinate system has been shifted to be
local to the null point(s) — new variables x and v

Lo 1 o

B:)’;:_ v =
R+ x Ov R+ x Ox

* Then expand the magnetic flux function to third order
in the new coordinates

w = lla: + ZQ'U
+ Q1.C132 + 2goxv + Q3’U2

3

+ clzcg + 62372?} + 63331)2 + cqv

Ryutov, D.D. et al 2010. Plasma Phys. Control. Fusion. 52 105001. © rm]
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Snowflake Tracker (2)

* The goal is to determine the expansion coefficients under the constraint that ¥
approximately satisfies the current-free G-S equation.

* Magnetic field components in terms of 9 expansion coefficients:

1
Bx:_R——l—zL‘ (lg—|—2q2x—|—2qgv—|—02v2—|—203azv—|—304v2)
1
B, =— ([ +2 + 2 + 3c122 4 2c0xv + c3v°
R+az(1 q1T q2v 1 2 3 )

* Three constraints come from substituting ¥ into the G-S equation:

—l1 + 21 R+ 2q3R =0
—2q1 + 61 R+ 2c3R =0
—2q2 + 2co R+ 6¢c, R =0

* For a second-order null atthe origin of the x, v coordinate system: l’'s and q’s = 0.

* For a snowflake with two closely separated x-points: I's and q’s are small.

Ryutov, D.D. et al 2010. Plasma Phys. Control. Fusion. 52 105001.
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Finding the expansion coefficients

* 6 free expansion coefficients are found by sampling B, and B,, at three points and then
solving the following linear equations for i={1, 2, 3}.

2

- (R + wz) Ba:,i = 12 + 2(]2[6‘@' + 2(]3’07; — 304 z) - 66133@'2)7;
2

(R + Q?Z) Bv,z’ =1 — 2q3x; + 2q2v; + 31

(.CIJ‘Z'Q — v
(aziQ — v ) — b6cyx;v;

* B, and B, obtained in real-time from T \/ ~
rtEFIT. 1af
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Snowflake Geometry

Considera polar coordinate ~ * B \ ' ‘ ' | | ‘
system local to the x-points. \
-13H ' :

Snowflake geometry then o
defined by four parameters: 14l |
* r.andz, —coordinates [

of the polar coordinate |

system origin (centroid) _

relative to the tokamak = ~'* | \

e p—radial distance | ! -]_ N l
. ] | ) + 177,
between x-point and | =1m
centroid Ll | = |
' — f
. . :| ’
* 0 -angle as defined in II—{A
the figure (right) 19 «T] L —d . |
Goal is independent control » 1 1 l : ; , / -
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 11
of each parameter. r [m]
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Snowflake Controller

1.  Calculate Jacobian matrix J that maps changes in coil currents to changes in snowflake

location.
5o
50 0 prar
=J |dlpricL
ore
0 priaL
|02 ]

2.  Take the pseudoinverse of J and compute the set of coil currents that minimizes error
between current and target snowflake location.

5o
0l prar, 50
Slprion| =3T3 JT

ore
0 priAL

02

3.  Pass 6I's through PID controller and then output voltage commands to PF coils.

I dAL (t
Vv](t>:R]>< I] (t—l)—l—Kp,] (AI] (t)—l—T / AI] (T)dT—FTd’] ]())]
©,j J0

dt

@NSTX-U 57 Annual Meeting of the APS Division of Plasma Physics, SFD Control, Vail etal., 11/2015 13



Simulation

* Snowflake trackingand coil current computations

2_
have been simulated in TokSys for expected FY2016
NSTX-U plasmas. 150
 PF2L, PF1CL, and PF1AL coils used for control. 1
Ip 1 MA 05}
B; 0.65T z
By 1.07 "
l; 0.65 Rl
Configuration lower-null 4k
Inner Gap 11.1cm
1.5}
Outer Gap 59cm
K 2.62 2
'QIDNSTX-U

Il
1.5

r[m]
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Single X-Point to Showflake Minus
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Single X-Point to Showflake Minus
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Single X-Point to Showflake Plus
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Single X-Point to Showflake Plus
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Strike Point Control (1)

1. Locate and calculate the flux at the primary x-point, calculate flux at the target strike point
location, and then calculate the flux error as follows:

A¢ — wstrike,targ — wscpt

2. Calculate the Jacobian matrix J that maps changes in coil currents to changes in Y at the
target strike point location, where the entries of J are the mutual inductances M;;

between coils and target strike point:
" 0lprar ]

A =J |dlpricrL

0IpriAL

3. Take the pseudoinverse of J and compute the set of coil currents that minimizes the error
between current and target strike point location:

 0lprar ]
SIpricr| = (37T ITAY

0lpriaL

QDNSTX-U 57 Annual Meeting of the APS Division of Plasma Physics, SFD Control, Vail etal., 11/2015 19



Strike Point Control (2)
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Strike Point Control (3)

PF2L

Strike Point Radial
58 I~ ¥ T =
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