

Results of using the NSTX-U plasma control system for scenario development

M.D. Boyer¹, D.J. Battaglia¹, D.A. Gates¹, S. Gerhardt¹,

J. Menard¹, D. Mueller¹, C.E. Myers¹,

J. Ferron², S. Sabbagh³, F. Scotti⁴

¹PPPL, ²General Atomics, ³Columbia University, ⁴LLNL

58th Annual Meeting of the APS Division of Plasma Physics Oct 31 – Nov 4, 2016, San Jose, California

Advanced control will be required for achieving many of the research goals of NSTX-U

- High-beta operation and noninductive scenarios
 - Maximizing elongation
 - Shaping and profile control
- Heat flux handling
 - X-point, strike point control
 - Snowflake control
- Disruption detection/mitigation
 - Real-time plasma monitoring
 - Event-handling

- Near-term plans

Increased aspect ratio of NSTX-U makes vertical control more challenging

- Added sensors and noise rejection to improve estimation of vertical position/velocity
- Sensor weights determined by least squares fit to IpZp of free boundary equilibria
- Filtering removes noise, power supply ripple, and spurious signal due to MHD events

NSTX-U

58th APS-DPP, Results of using the NSTX-U Plasma Control System for scenario development, M.D. Boyer, 11/01/16

NSTX-U

58th APS-DPP , Results of using the NSTX-U Plasma Control System for scenario development, M.D. Boyer, 11/01/16

A method for inner gap control (a challenge for ST's) has also been tested

- No way to independently control the inner gap
 - No shaping coils on inboard side, available coils already assigned...
- Approach:
 - Automatically adjust other shaping parameters based on operator provided weight matrix to achieve desired inner gap

- Plasma control system detects loss of control
 - OH near max current
 - Vertical oscillations exceed threshold
 - ABS (I_p I_{p request}) too large
 - Locked mode detected_0.5
- Feedback control switches to new "states" that attempt to gently end the discharge

Gerhardt NP10.00005

NSTX-U

58th APS-DPP, Results of using the NSTX-U Plasma Control System for scenario development, M.D. Boyer, 11/01/16

- Plasma control system detects loss of control
 - OH near max current
 - Vertical oscillations exceed threshold
 - ABS (I_p I_{p request}) too large
 - Locked mode detected_0.5
- Feedback control switches to new "states" that attempt to gently end the discharge

Gerhardt NP10.00005

NSTX-U

58th APS-DPP, Results of using the NSTX-U Plasma Control System for scenario development, M.D. Boyer, 11/01/16

- Plasma control system detects loss of control
 - OH near max current
 - Vertical oscillations exceed threshold
 - ABS (I_p I_{p request}) too large
 - Locked mode detected_0.5
- Feedback control switches to new "states" that attempt to gently end the discharge

Gerhardt NP10.00005

NSTX-U

58th APS-DPP , Results of using the NSTX-U Plasma Control System for scenario development, M.D. Boyer, 11/01/16

- Plasma control system detects loss of control
 - OH near max current
 - Vertical oscillations exceed threshold
 - ABS (I_p I_{p request}) too large
 - Locked mode detected_0.5
- Feedback control switches to new "states" that attempt to gently end the discharge

Gerhardt NP10.00005

NSTX-U 5

58th APS-DPP, Results of using the NSTX-U Plasma Control System for scenario development, M.D. Boyer, 11/01/16

New plasma control capabilities enabled rapid development of high-performance plasmas on NSTX-U

- Early scenario development enabled by improvements in **vertical control**, and **shape control**
 - Commissioned tools to facilitate experiments (strikepoint/inner gap control)
- New event handler for reducing stress on machine and facilitating disruption detection/avoidance/mitigation studies
- Poised to support future scientific goals with new capabilities:
 - Snowflake divertor control for studying heat flux management
 - Algorithm tested in hardware-in-the-loop simulations
 - Stored energy and I_i control, rotation and current profile control for highbeta and non-inductive scenario development
 - Approaches tested in TRANSP simulations, PCS algorithms being implemented