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• Previous NSTX L-mode analysis using local and non-local gyrokinetic codes predict different 

results from relatively large r*=ri/a~1/120 

– Local GYRO ion-scale (krs<1) simulations predict wide variation of fluxes with radius compared to exp.       

(Ren, Nucl. Fusion 2013) 

– Global GTS ion-scale simulations get close to predicting Qi,simQi,exp but Qe,sim remains far too small           

(Wang, Phys. Plasmas 2015; Ren, IAEA FEC 2016, EX/P4-35) 

– Limited fluctuation data available 

 

• GOAL: develop NSTX-U L-mode discharges for code benchmarking & validating finite-r*/non-

local effects at low A=R/a using global gyrokinetic simulations (GTS, GENE, XGC, GYRO…) 

– Ultimately want to do this for high-b H-modes but electromagnetic simulations are very challenging 

 Start with low-b L-mode for electrostatic simulations 

 

Spherical tokamaks (STs) provide extended range of b, R/a and 
r* over which to validate theory and simulation 
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• Focus here is on IP=0.8 MA, 41019 m-3, 

PNBI=2.6 MW discharge 

– Used HFS fueling to raise density and 

avoid L-H transition 

 

• EFIT reconstruction gives  

 

 

 

 

• Using time-average between 0.9-1.2 s 

for transport analysis and simulations 

Using stationary, sawtoothing L-modes established during NSTX-U 
commissioning for validation study 
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• Sawtooth inversion radius R125 

cm, yN0.27 consistent with EFIT 

(no MSE measurements) 

 

• Rotation locked outside 140 cm 

(likely from 2/1 mode) 

Kinetic profiles illustrate sawteeth, low carbon impurity, and 
strong local flow shear in region of interest 
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• Sawtooth inversion radius R125 

cm, yN0.27 consistent with EFIT 

(no MSE measurements) 

 

• Rotation locked outside 140 cm 

(likely from 2/1 mode) 

 

 Very strong local flow shear in 

region of interest (R=125-140 cm, 

yN=0.27-0.73, r=0.37-0.68) 

Kinetic profiles illustrate sawteeth, low carbon impurity, and 
strong local flow shear in region of interest 

nD 
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Ion transport ~ neoclassical, 
~0.5 MW uncertainty in heat fluxes from collisional coupling 

S.M. Kaye, NP10.01 (Wed AM) 
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48 channel BES system shows broadband (f<200 kHz), large 
amplitude (2-8%) ion-scale density fluctuations 

D.M. Kriete, NP10.14 

(Wed AM) 

BES dI/I 

(1-200 kHZ) 

BES sightlines (UW-Madison) 
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BES poloidal cross-phase shows dual-mode propagation 

• Ion mode found R=134-144 cm 

 

• Low frequency (f<50 kHz) electron mode found 

at all radii (R=134-146 cm) 

– Outer most radii has strong electron mode only 

 

• Concern that electron mode could be due to 

shadowing from large amplitude edge 

fluctuations (see D.M Kriete poster NP10.14) 
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BES poloidal cross-phase shows dual-mode propagation 

• Ion mode found R=134-144 cm 

 

• Low frequency (f<50 kHz) electron mode found 

at all radii (R=134-146 cm) 

– Outer most radii has strong electron mode only 

 

• Concern that electron mode could be due to 

shadowing from large amplitude edge 

fluctuations (see D.M Kriete poster NP10.14) 

 Fluctuation amplitude of only ion-directed 

modes (50-200 kHz) much smaller (0.1-1.5%) 

– Analysis of UCLA 16 channel reflectometer ongoing 
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• ITG modes propagates in ion direction 

– Propagation direction consistent with BES ion mode (need to 

consider Doppler shift, although also in ion direction) 

At ion scales (kqrs<1), linear GYRO* simulations predict unstable 
ion temperature gradient (ITG)                                                  _ 

*GYRO (Candy, Waltz, 2003) 

R (cm) 

Linear growth rates, g (cs/a) 



11 NSTX-U L-mode validation, APS-DPP 2016  (Guttenfelder, GO6.4) 

• ITG modes propagates in ion direction 

– Propagation direction consistent with BES ion mode (need to 

consider Doppler shift, although also in ion direction) 

 

• MTM propagates in electron direction 

– Surprised to find MTM unstable  sufficient beta (4.1%) and large 

collisionality enhances MTM 

At ion scales (kqrs<1), linear GYRO* simulations predict unstable 
ion temperature gradient (ITG) and microtearing modes (MTM) 

*GYRO (Candy, Waltz, 2003) 
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• ITG modes propagates in ion direction 

– Propagation direction consistent with BES ion mode (need to 

consider Doppler shift, although also in ion direction) 

 

• MTM propagates in electron direction 

– Surprised to find MTM unstable  sufficient beta (4.1%) and large 

collisionality enhances MTM 

 

• Strong local EB shearing rates (gE>gITG,gMTM at R=135 cm) 

– BES amplitudes increasing where gITG > gE 

 

At ion scales (kqrs<1), linear GYRO* simulations predict unstable 
ion temperature gradient (ITG) and microtearing modes (MTM) 

*GYRO (Candy, Waltz, 2003) 
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• ITG modes propagates in ion direction 

– Propagation direction consistent with BES ion mode (need to 

consider Doppler shift, although also in ion direction) 

 

• MTM propagates in electron direction 

– Surprised to find MTM unstable  sufficient beta (4.1%) and large 

collisionality enhances MTM 

 

• Strong local EB shearing rates (gE>gITG,gMTM at R=135 cm) 

– BES amplitudes increasing where gITG > gE 

 

Strong variation in turbulence, stability and EB shear over 30 rs 
 motivates the need for global simulations 

~30 rs 

*GYRO (Candy, Waltz, 2003) 

Linear growth rates, g (cs/a) 
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• ITG modes propagates in ion direction 

– Propagation direction consistent with BES ion mode (need to 

consider Doppler shift, although also in ion direction) 

 

• MTM propagates in electron direction 

– Surprised to find MTM unstable  sufficient beta (4.1%) and large 

collisionality enhances MTM 

 

• Strong local EB shearing rates (gE>gITG,gMTM at R=135 cm) 

– BES amplitudes increasing where gITG > gE 

 

Electron scale (krs>>1) ETG also linearly unstable (gETG>>gE) in 
region of strong EB shear 

~30 rs 

*GYRO (Candy, Waltz, 2003) 

Linear growth rates, g (cs/a) 
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Nonlinear ETG simulations give significant transport around 
mid-radius (R=129-140 cm, r=0.47-0.67) 

r  0.45 0.55 0.65 0.75  

• Qe,etg large enough to account for Qe,exp if Zeff=Zeff,c1.2 

– Larger Zeff (VB Zeff2) would lower Qe,etg 

 

• New high-k microwave scattering diagnostic will be ideal 

for probing region of ETG turbulence 

 

• May require multiscale simulations for validation 



16 NSTX-U L-mode validation, APS-DPP 2016  (Guttenfelder, GO6.4) 

Experiment 

• Electrons carry majority of heat flux, ion transport ~ neoclassical 

• BES measures strong, broadband (f200 kHz) ion-scale turbulence with bi-modal 

propagation (caveat of possible edge shadowing) 

 

Simulation 

• ITG & MTM are unstable at ion scales (kqrs<1), EB shearing is strong with 

significant radial variation  motivates global GK benchmarking and validation 

• Significant electron-scale (kqrs>1) ETG transport predicted at midradius where 

gE>(gITG,gMTM)  may also require multiscale simulations 

 
• Acknowledgements: This research used resources of the National Energy Research Scientific Computing 

Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of 

Energy under Contract No. DE-AC02-05CH11231. 

Summary: L-modes established during NSTX-U commissioning 
being used for transport validation 
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• ITG modes propagates in ion direction 
– Propagation direction consistent with BES ion mode (need to 

consider Doppler shift, although also in ion direction) 

 

• MTM propagates in electron direction 
– Surprised to find MTM unstable  sufficient beta (4.1%) and 

large collisionality enhances MTM 

At ion scales (kqrs<1), linear GYRO* simulations predict 
unstable spectra of ITG and microtearing modes (MTM) 

*GYRO (Candy, Waltz, 2003) 
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• Established stationary, stable L-modes during commissioning 

(spring 2016)  

– ne=1-41019 m-3 

– Ip=0.65-1.0 MA (BT=0.65 T) 

– PNBI=1-3 MW 

– 2nd NBI sources (bigger Rtan) had noticeable effect on rotation, 

tearing stability, locked modes 

 

• Sustained shots up to 1.5 sec with 2.5-2.9 MW, bN2 with 

different combination of beam sources 

– Used HFS fueling to raise density and avoid L-H transition 

– Tried up to 4.3 MW but H-mode or disruptions occur (bN~2.5) 

 

• All shots sawtoothing (Rinv~125 cm, Dt~25-35 ms depending 

on NBI source and plasma density) 

NSTX-U L-modes established over range of density, plasma 
current, neutral beam power & tangency radii 
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Have repeated analysis on lower Ip, ne, Pnbi discharge 204963, 
Qualitative similarity ion scale fluctuations and microstability 

• Larger low-k fluctuation amplitudes in 204963, cross-phases similar to 204551 

– 16 channel UCLA reflectometer data also available for this shot 

• gITG larger due to reduced Ti/Te & gE reduced (less beam torque) 

• gMTM weaker (lower be) 

• gETG weaker (reduced Ti/Te, R/LTe) 
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Evidence for dual-modes found in multiple discharges 
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Shot Time (s) BT (T) Ip (MA) PNBI (MW) ne WMHD (kJ) q95 bN bT (%)  li 

204551 0.9-1.2 0.63 0.79 (0.8) 2.6 

(1A+1B) 

4.3 95 

(105) 

4.8 

(4.5) 

2.0 

(2.1) 

4.1 

(4.4) 

1.7 

(1.8) 

1.3 

(1.1) 

204651 0.9-1.1 0.63 0.64 (0.65) 1.0 

(1C) 

3.1 42 

(63) 

5.1 

(5.2) 

1.1 

(1.6) 

1.9 

(2.8) 

1.7 

(1.7) 

1.5 

(1.2) 

204963 0.9-1.1 0.63 0.64 (0.65) 0.94 (1B) 3.1 62 

(80) 

5.5 

(5.5) 

1.7 

(2.1) 

2.8 

(3.6) 

1.7 

(1.7) 

1.3 

(1.1) 

Shot parameters 

• EFIT01 (EFIT02) 


