

Initial transport validation studies using NSTX-U L-mode plasmas

<u>W. Guttenfelder</u>¹, S.M. Kaye¹, M. Kriete², D. Battaglia¹, R.E. Bell¹, M.D. Boyer¹, N. Crocker³, A. Diallo¹, N. Ferraro¹, S.P. Gerhardt¹, B.P. LeBlanc¹, D. Liu¹, G.R. McKee², J.E. Menard¹, D. Mueller¹, C. Myer¹, M. Podesta¹, R. Raman⁴, Y. Ren¹, S.A. Sabbagh⁵, D. Smith² ¹PPPL, ²U. Wisconsin-Madison, ³UCLA, ⁴U. Washington, ⁵Columbia APS-DPP, San Jose CA

Nov. 1, 2016

Spherical tokamaks (STs) provide extended range of β , R/a and ρ_* over which to validate theory and simulation

- Previous NSTX L-mode analysis using local and non-local gyrokinetic codes predict different results from relatively large ρ_{*}=ρ_i/a~1/120
 - Local GYRO ion-scale ($k_{\perp}\rho_s$ <1) simulations predict wide variation of fluxes with radius compared to exp. (*Ren, Nucl. Fusion 2013*)
 - Global GTS ion-scale simulations get close to predicting Q_{i,sim}≈Q_{i,exp} but Q_{e,sim} remains far too small (Wang, Phys. Plasmas 2015; Ren, IAEA FEC 2016, EX/P4-35)
 - Limited fluctuation data available
- <u>GOAL</u>: develop NSTX-U L-mode discharges for code benchmarking & validating finite-ρ_{*}/nonlocal effects at low A=R/a using global gyrokinetic simulations (GTS, GENE, XGC, GYRO...)
 - Ultimately want to do this for high- β H-modes but electromagnetic simulations are very challenging
 - \Rightarrow Start with low- β L-mode for electrostatic simulations

Using stationary, sawtoothing L-modes established during NSTX-U commissioning for validation study

- Focus here is on $I_P=0.8$ MA, 4×10^{19} m⁻³, $P_{NBI}=2.6$ MW discharge
 - Used HFS fueling to raise density and avoid L-H transition
- EFIT reconstruction gives

$$\begin{split} \kappa = & 1.7, \, \ell_{\,\rm i} = 1.3, q_{\rm 95} = 4.8 \\ \beta_{\rm N} = & 2.0, \beta_{\rm T} = 4.1\% \end{split}$$

Using time-average between 0.9-1.2 s
for transport analysis and simulations

Kinetic profiles illustrate sawteeth, low carbon impurity, and strong local flow shear in region of interest

- Sawtooth inversion radius R≈125 cm, ψ_N≈0.27 consistent with EFIT (no MSE measurements)
- Rotation locked outside 140 cm (likely from 2/1 mode)

Kinetic profiles illustrate sawteeth, low carbon impurity, and strong local flow shear in region of interest

- Sawtooth inversion radius R≈125 cm, ψ_N≈0.27 consistent with EFIT (no MSE measurements)
- Rotation locked outside 140 cm (likely from 2/1 mode)
- ⇒ Very strong local flow shear in region of interest (R=125-140 cm, ψ_N =0.27-0.73, ρ =0.37-0.68)

Ion transport ~ neoclassical, ~0.5 MW uncertainty in heat fluxes from collisional coupling

S.M. Kaye, NP10.01 (Wed AM)

48 channel BES system shows broadband (f<200 kHz), large amplitude (2-8%) ion-scale density fluctuations

BES poloidal cross-phase shows dual-mode propagation

- Ion mode found R=134-144 cm
- Low frequency (f<50 kHz) electron mode found at all radii (R=134-146 cm)
 - Outer most radii has strong electron mode only
- Concern that electron mode could be due to shadowing from large amplitude edge fluctuations (see D.M Kriete poster NP10.14)

BES poloidal cross-phase shows dual-mode propagation

- Ion mode found R=134-144 cm
- Low frequency (f<50 kHz) electron mode found at all radii (R=134-146 cm)
 - Outer most radii has strong electron mode only
- Concern that electron mode could be due to shadowing from large amplitude edge fluctuations (see D.M Kriete poster NP10.14)
- ⇒ Fluctuation amplitude of only ion-directed modes (50-200 kHz) much smaller (0.1-1.5%)
 - Analysis of UCLA 16 channel reflectometer ongoing

At ion scales ($k_{\theta}\rho_s$ <1), linear GYRO* simulations predict unstable ion temperature gradient (ITG)

- ITG modes propagates in ion direction
 - Propagation direction consistent with BES ion mode (need to consider Doppler shift, although also in ion direction)

*GYRO (Candy, Waltz, 2003)

11

At ion scales ($k_{\theta}\rho_s$ <1), linear GYRO* simulations predict unstable ion temperature gradient (ITG) and microtearing modes (MTM)

- ITG modes propagates in ion direction
 - Propagation direction consistent with BES ion mode (need to consider Doppler shift, although also in ion direction)
- MTM propagates in electron direction
 - Surprised to find MTM unstable \Rightarrow sufficient beta (4.1%) and large collisionality enhances MTM

*GYRO (Candy, Waltz, 2003)

At ion scales ($k_{\theta}\rho_s$ <1), linear GYRO* simulations predict unstable ion temperature gradient (ITG) and microtearing modes (MTM)

- ITG modes propagates in ion direction
 - Propagation direction consistent with BES ion mode (need to consider Doppler shift, although also in ion direction)
- MTM propagates in electron direction
 - Surprised to find MTM unstable \Rightarrow sufficient beta (4.1%) and large collisionality enhances MTM
- Strong *local* E×B shearing rates ($\gamma_E > \gamma_{ITG}, \gamma_{MTM}$ at R=135 cm)
 - BES amplitudes increasing where $\gamma_{ITG} > \gamma_{E}$

*GYRO (Candy, Waltz, 2003)

Strong variation in turbulence, stability and E×B shear over \leq 30 $\rho_s \Rightarrow$ motivates the need for global simulations

- ITG modes propagates in ion direction
 - Propagation direction consistent with BES ion mode (need to consider Doppler shift, although also in ion direction)
- MTM propagates in electron direction
 - Surprised to find MTM unstable \Rightarrow sufficient beta (4.1%) and large collisionality enhances MTM
- Strong *local* E×B shearing rates ($\gamma_E > \gamma_{ITG}, \gamma_{MTM}$ at R=135 cm)
 - BES amplitudes increasing where $\gamma_{ITG} > \gamma_E$

*GYRO (Candy, Waltz, 2003)

Electron scale ($k_{\perp}\rho_s$ >>1) ETG also linearly unstable (γ_{ETG} >> γ_E) in region of strong E×B shear

- ITG modes propagates in ion direction
 - Propagation direction consistent with BES ion mode (need to consider Doppler shift, although also in ion direction)
- MTM propagates in electron direction
 - Surprised to find MTM unstable \Rightarrow sufficient beta (4.1%) and large collisionality enhances MTM
- Strong *local* E×B shearing rates ($\gamma_E > \gamma_{ITG}, \gamma_{MTM}$ at R=135 cm)
 - BES amplitudes increasing where $\gamma_{ITG} > \gamma_E$

Nonlinear ETG simulations give significant transport around mid-radius (R=129-140 cm, ρ=0.47-0.67)

Summary: L-modes established during NSTX-U commissioning being used for transport validation

Experiment

- Electrons carry majority of heat flux, ion transport ~ neoclassical
- BES measures strong, broadband (f≤200 kHz) ion-scale turbulence with bi-modal propagation (caveat of possible edge shadowing)

Simulation

- ITG & MTM are unstable at ion scales ($k_{\theta}\rho_s$ <1), E×B shearing is strong with significant radial variation \rightarrow motivates global GK benchmarking and validation
- Significant electron-scale ($k_{\theta}\rho_s$ >1) ETG transport predicted at midradius where γ_E >(γ_{ITG} , γ_{MTM}) \rightarrow may also require multiscale simulations
- Acknowledgements: This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

At ion scales ($k_{\theta}\rho_{s}$ <1), linear GYRO* simulations predict unstable spectra of ITG and microtearing modes (MTM)

- ITG modes propagates in ion direction
 - Propagation direction consistent with BES ion mode (need to consider Doppler shift, although also in ion direction)
- MTM propagates in electron direction
 - Surprised to find MTM unstable ⇒ sufficient beta (4.1%) and large collisionality enhances MTM

*GYRO (Candy, Waltz, 2003)

NSTX-U L-modes established over range of density, plasma current, neutral beam power & tangency radii

- Established stationary, stable L-modes during commissioning (spring 2016)
 - − (n_e)=1-4×10¹⁹ m⁻³
 - I_p=0.65-1.0 MA (B_T=0.65 T)
 - P_{NBI}=1-3 MW
 - 2nd NBI sources (bigger R_{tan}) had noticeable effect on rotation, tearing stability, locked modes
- Sustained shots up to 1.5 sec with 2.5-2.9 MW, $\beta_{\text{N}} {\leq} 2$ with different combination of beam sources
 - Used HFS fueling to raise density and avoid L-H transition
 - Tried up to 4.3 MW but H-mode or disruptions occur ($\beta_N \sim 2.5$)
- All shots sawtoothing (R_{inv}~125 cm, ∆t~25-35 ms depending on NBI source and plasma density)

Have repeated analysis on lower I_p , n_e , P_{nbi} discharge 204963, Qualitative similarity ion scale fluctuations and microstability

NSTX-U

NSTX-U L-mode validation, APS-DPP 2016 (Guttenfelder, GO6.4)

Evidence for dual-modes found in multiple discharges

NSTX-U

Shot parameters

Shot	Time (s)	В _т (Т)	I _p (MA)	P _{NBI} (MW)	n _e	W _{MHD} (kJ)	q ₉₅	β _N	β _T (%)	к	l _i
204551	0.9-1.2	0.63	0.79 <mark>(0.8)</mark>	2.6 (1A+1B)	4.3	95 (105)	4.8 (4.5)	2.0 (2.1)	4.1 (4.4)	1.7 (1.8)	1.3 (1.1)
204651	0.9-1.1	0.63	0.64 (0.65)	1.0 (1C)	3.1	42 (63)	5.1 <mark>(5.2)</mark>	1.1 (1.6)	1.9 (2.8)	1.7 (1.7)	1.5 (1.2)
204963	0.9-1.1	0.63	0.64 (0.65)	0.94 (1B)	3.1	62 (80)	5.5 (5.5)	1.7 (2.1)	2.8 (3.6)	1.7 (1.7)	1.3 (1.1)

• EFIT01 (EFIT02)

