

Initial Measurements of Beam Ion Confinement on NSTX-U

D. Liu, W. W. Heidbrink, G. Z. Hao

University of California, Irvine

D.S. Darrow, M. Podestà, E. Fredrickson

Princeton Plasma Physics Laboratory

58th Annual Meeting of the APS Division of Plasma Physics San Jose, California October 31 - November 4 2016

Motivation: Neutral Beam Checkout and NUBEAM Validation

NB line #2 is added to improve NBCD efficiency and provide more flexibility in current/q profile control. Good fast ion confinement is essential.

> Initial assessment of beam ion confinement in a diagnostic checkout experiment.

Beam Blips Injected into Low n_e, L-Mode Plasmas

1.8 Plasma conditions ~ Nb nd $<\sigma v >$ Center-stack limited, n_e~1-3x10¹³cm⁻³ B_t=0.65T, I_p~0.7MA S_{neutron} dominated by beam-plasma reaction <u>ග</u> 1.2 Exponential decayas beam ions thermalize Beam blips (~20ms pulses) $\propto T_{c}^{3/2}$ / n'TRONS S_{neutron} rise depends on number of confined beam ions injected 0.6 ■ S_{neutron} decay depends on slowing down and ¹/₂ losses on t_{slowing-down} E_{ini}=85keV and E_{ini}=65keV Infer confinement time from decay process Heidbrink, Nucl. Fusion (2003) \circ Limited diagnostics, large uncertainties in Z_{eff} , 0.24 0.25 0.23 0.26 0.27 T_i equilibrium, edge neutral density TIME (s)

At E_{inj}=85keV, Neutron Decay Time Agrees with TRANSP Modelling, but Rise is ~65% of Prediction (1/2)

-ow freq Mirnov [a. u.

- Exclude bad blips with strong MHD
- TRANSP: Classical, flat Z_{eff}=1.5
- Use "2FG" scintillator neutron signal, cross calibrated to fission detector

Source (E _{inj} =85keV)	Neutron Rise (Exp/TRANSP)	Neutron Decay (Exp/TRANSP)
1B (R _{tan} 60cm)	0.58 +/- 0.02	1.02 +/- 0.08
1C (R _{tan} 50cm)	0.72 +/- 0.05	0.92 +/- 0.09
2A (R _{tan} 130cm)	0.66 +/- 0.03	1.01 +/- 0.09
2C (R _{tan} 110cm)	0.62 +/- 0.04	1.02 +/- 0.08

At E_{inj}=85keV, Neutron Decay Time Agrees with TRANSP Modelling, but Rise is ~65% of Prediction (2/2)

Good agreement on neutron decay time indicates fast ions are well confined

~35% discrepancy in neutron rise (and absolute neutron rate) could be induced by uncertainties in neutron rate calibration, Z_{eff} & beam species mix

NSTX-U APS-DPP 2016 GO6.00005:

Initial Measurements of Beam Ion Confinement on NSTX-U

At E_{inj}=65keV, Relatively Large Discrepancy between Measurements and TRANSP Modelling (2/2)

TRANSP decay time gets reasonable agreement with data when a small anomalous fast ion diffusivity ($D_{af}=0.3m^2/s$) is used.

→ Beam ion behavior is still close to classical theory

NSTX-U

Possible Reasons for Discrepancies in Neutron Decay and Neutron Rise

- Reasons for neutron decay discrepancy in E_{inj}=65keV case
- Fast-ion Losses on 10 ms timescale
 - o likely, huge edge/background neutral density, error fields, MHD
 - $_{\odot}$ blips with E_{inj}=65keV on March 30, blips with E_{inj}=85keV on June 28 $_{\odot}$ discrepancies of 2A/2C are slightly larger than 1B/1C
- Reasons for neuron rise (and absolute neutron rate) discrepancy
- $\underline{Z_{eff}}$: likely, currently Z_{eff} =1.5, need to increase Z_{eff} to ~3.5 in TRANSP
- Neutron calibration uncertainties: possible, absolute error ~20%
- <u>Beam species mix</u>: possible, E_{full} in TRANSP is ~15% higher than the estimation from beam-into-gas shots for E_{ini}=65keV case
- <u>Equilibrium</u>: maybe, different equilibrium reconstructions lead to a 10% difference

Conclusions

- > The behavior of NB line #2 is similar to NB line #1 for E_{ini} =85keV and 65keV.
- Based on neutron decay time after beam turn-off, beam ions are well confined when E_{inj}=85keV. The confinement at E_{inj}=65keV is slightly less than classical theory, but still ~100ms.
- The measured neutron rise and absolute neutron magnitude are only 60%-70% of TRANSP predictions.
- Likely because of large uncertainties in Z_{eff}, E_{full} fraction, neutron calibration or edge/background neutral density.

More data on fast ion confinement and transport see poster NP10.00016 G. Z. Hao