

Disruption Event Characterization and Forecasting in NSTX-U

S.A. Sabbagh¹, J.W. Berkery¹, J.M. Bialek¹, Y.S. Park¹, R.E. Bell², M.D. Boyer², S.P. Gerhardt², C. Myers², J.D. Riquezes³

¹Department of Applied Physics, Columbia University, New York, NY, ²Princeton Plasma Physics Laboratory, Princeton, NJ, ³University of Michigan, Ann Arbor, MI

58th Annual Meeting of the APS Division of Plasma Physics, San Jose, California 11/1/16

*This work supported by the US DOE contracts DE-AC02-09CH11466 and DE-FG02-99ER54524

Disruption event chain characterization capability started for NSTX-U as next step in disruption avoidance plan

(from DOE Report on Transients in Tokamak Plasmas (2015))

Approach to disruption prevention

- Identify disruption event elements and chains
- Predict events in disruption chains
- Cue disruption avoidance systems to break event chains
 - Attack events at several places with active control

2

 Synergizes and builds upon both physics understanding, control successes of NSTX

Disruption Event Characterization And Forecasting Code (DECAF) yielding initial results

- 10 physical events presently defined in code with quantitative warning points
 - Builds on characterization work of de Vries P.C. de Vries *et al.*, Nucl. Fusion **51** (2011) 053018
 - Builds on warning algorithm of Gerhardt S.P. Gerhardt *et al.*, Nucl. Fusion **53** (2013) 063021
 - New code written (in Python) to be easily expandable, portable to other tokamaks (reads NSTX, NSTX-U, DIII-D data)
- Example: Pressure peaking (PRP) disruption event chain identified by code
 - 1. (PRP) Pressure peaking warnings identified first
 - 2. (VDE) VDE condition subsequently found 19 ms after last PRP warning
 - 3. (IPR) Plasma current request not met
 - 4. (SCL) Shape control warning issued

DECAF results detect disruption chain events when applied to dedicated 44 shot NSTX RWM disruption database

Several events detected for all shots

- RWM: Resistive wall mode
- SCL: Loss of shape control
- IPR: Plasma current request not met
- DIS: Disruption occurred
- LOQ: Low edge q warning
- VDE: VDE warning (40 shots)

Other Events

- PRP: Pressure peaking warning
- LON: Low density warning
- GWL: Greenwald limit
- LTM: Locked tearing mode

DECAF analysis is finding common disruption event chains

- □ Event chains with RWM and VDE (52.3%)
 - Related chains
 - RWM → VDE → SCL → IPR → DIS
 - RWM → SCL → VDE → IPR → DIS
 - VDE → RWM → SCL → IPR → DIS
 - VDE → RWM → IPR → DIS → SCL
 - RWM → SCL → VDE → GWL → IPR → DIS
- Disruption event chains w/o VDE (11.4%)
- New insights being gained
 - Chains starting with GWL are found that show rotation and β_N rollover before RWM (6.8%)
 - GWL → VDE → RWM → SCL → IPR → DIS
 - GWL \rightarrow SCL \rightarrow RWM \rightarrow IPR \rightarrow DIS

Disruption event chains with RWM (44 shot database)

DECAF analysis yields time relation of chain events when applied to NSTX RWM disruption database

APS DPP 2016 - GO6.00007: Disruption Event Characterization and Forecasting in NSTX-U (S.A. Sabbagh, et al.) Nov 1st, 2016

6

Global mode stability forecasting: DECAF initial reduced kinetic MHD model tests well on unstable RWM database

Reduced model guided by full kinetic RWM stability model See J. Berkery invited talk YI2.00005 (Fri 11:30 AM)

Essential new step for DECAF analysis of general tokamak data: Identification of rotating MHD (e.g. NTMs)

Initial mode locking prediction model developed

DECAF rotating MHD analysis identifies the state of the modes found

<u>Magnetic signal / analysis (mode locking / unlocking)</u>

MNSTX-U APS DPP 2016 - GO6.00007: Disruption Event Characterization and Forecasting in NSTX-U (S.A. Sabbagh, et al.) Nov 1st, 2016 9

DECAF replicates the triggers found in new real-time plasma shutdown capability of NSTX-U

- Important capability of DECAF: compare analysis using offline vs. real-time data
- Plasma Shutdown Handler conditions are analogous to DECAF events
 - Control system loss of vertical control
 DECAF VDE
- DECAF comparison: VDE event
 - Matches Plasma Control System when r/t signal is used (1 criterion)
 - VDE event 13 ms earlier using offline EFIT signals (3 criteria: Z₀, dZ₀/dt, Z₀ x dZ₀/dt)

(for shutdown handler: see NP10.00005 S. Gerhardt (Wed AM)

Disruption event characterization, forecasting, and control are synergizing in NSTX-U for disruption avoidance

Physics Understanding

- Disruption Event Characterization and Forecasting code (DECAF) development continues: defining / forecasting disruption event chains
- Recent DECAF development includes initial kinetic RWM forecasting, and initial identification of rotating MHD modes, bifurcation, and locking

Stability Control

An arsenal of control tools will be available on NSTX-U for disruption avoidance (e.g. rotation, q profile control; RWM state-space controller)

Supporting Slides Follow

Disruption avoidance is a critical need for future tokamaks; NSTX-U is focusing stability research on this

- □ The present "grand challenge" in tokamak stability research
 - □ <u>Can be done</u>! (JET: < 4% disruptions w/C wall, < 10% w/ITER-like wall)
 - ITER disruption rate: < 1 2% (energy load, halo current); << 1% (runaways)</p>
- □ <u>Strategic plan</u>: utilize/expand stability/control research success
 - Synergize and build upon past MHD stability/control success (don't just repeat!)
 - Utilize this knowledge / evolve into disruption prediction and avoidance research
- FESAC 2015 DOE Transient Events report: Disruption Predicition, Avoidance, Mitigation a Tier 1 (highest priority) initiative
- Research at NSTX-U producing focused approach on disruption prediction and avoidance with quantitative measures of progress

MSTX-U APS DPP 2016 - GO6.00007: Disruption Event Characterization and Forecasting in NSTX-U (S.A. Sabbagh, et al.) Nov 1st, 2016 13

Global mode stability forecasting: build from success of drift kinetic theory modification to MHD as a model

Kinetic modification to ideal MHD

$$\gamma \tau_{w} = -\frac{\delta W_{\infty} + \delta W_{K}}{\delta W_{wall} + \delta W_{K}}$$

- Stability depends on
 - Trapped / circulating ions, electrons
 - Collisionality; Energetic particles
 - □ Integrated $\underline{\omega}_{\phi}$ profile matters!!! : broad rotation resonances in δW_{K}

plasma integral over particle energy

$$\delta W_{K} \propto \int \left[\frac{\omega_{*N} + \left(\hat{\varepsilon} - \frac{3}{2}\right)\omega_{*T} + \omega_{E} - \omega - i\gamma}{\langle \omega_{D} \rangle + l\omega_{b} - i\nu + \omega_{E} - \omega - i\gamma} \right] \hat{\varepsilon}^{\frac{5}{2}} e^{-\hat{\varepsilon}} d\hat{\varepsilon}$$
precession drift
bounce
collisionality
 ω_{ϕ} profile (enters)

MNSTX-U APS DPP 2016 - GO6.00007: Disruption Event Characterization and Forecasting in NSTX-U (S.A. Sabbagh, et al.) Nov 1st, 2016 14