

Advances in boronization in NSTX-U

C.H. Skinner, F. Bedoya, F. Scotti, J.P. Allain, W. Blanchard, D. Cai, M. Jaworski, B.E. Koel

58th Annual Meeting of the APS Division of Plasma Physics San Jose California Oct 31 – Nov 4, 2016,

NSTX-U Boronization

- Boronization was main wall conditioning technique in 2016
- Trimethylboron ws dissociated in a helium glow discharge. Forms a hard sputter resistant coating on PFCs.

2 Electrodes: 30°, 180° toroidally

3 Gas inlets: 60° lower, 90° upper, 150° midplane

4 Quartz Microbalances: 30° mid, 120° top, 150° lower 240° mid

D Cai et al., TOFE proceedings (2016)

NSTX-U Glow Discharge

Glow Discharge Physics:

- A hollow-cathode discharge,
- sustained mainly by ionization by secondary electrons emitted from the vessel wall (cathode),
- accelerated ballistically through a thin cathode sheath, penetrating the plasma as a fast electron beam,
- trapped by the cathode fall surrounding the plasma on all sides.
- The electric field distribution inside the plasma is controlled by low-energy plasma bulk electrons.
- The anode has a much lower surface area compared to the cathode (vessel wall)

- leads to the formation of an anode glow and an order-ofmagnitude higher ion flux near the anode.

Hagelaar Plasma Phys Contr F 57 (2015) 025008

Most deposition at midplane

NSTX-U

58th Annual Meeting of the APS DPP, San Jose CA, 'Advances in Boronization', C.H.Skinner et al., Nov 1, 2016

More divertor deposition @ lower pressure

Deposition at top and bottom of vessel increased at lower pressure (longer mfp).

Subsequent boronizations used 1.7 mtorr.

More deposition near gas injector, most deposition near electrode

Top injector enhances top deposition by 30%. Lower injector enhances bottom deposition by 21% Deposition on the QMBs using only one GD electrode, plotted as a function of distance to the electrode in use. The high point at 1,515Å is deposition on the 30° QMB when the nearby 30° GD electrode is in use.

NSTX-U

Surface chemistry monitored with MAPP

Materials Analysis Particle Probe (MAPP) JP Allain, B Heim, F Bedoya, R Kaita et al...

X-ray Photoelectron Spectroscopy

See next talk: GO6.00009: C Bedoya et al.,

58th Annual Meeting of the APS DPP, San Jose CA, 'Advances in Boronization', C.H.Skinner et al., Nov 1, 2016

MAPP probe revealed OII emission correlated with surface O rise after boronization

- Boronization reduced surface oxygen concentration to 4% - 9%
- Surface oxygen then increased with plasma exposure by 0.14%/sec from 7.6% up to 26%.
- This increase in surface oxygen concentration was correlated with a rise in lower divertor OII plasma emission.

Surface %O and OII emission rose faster after 'mini-boronization'

- 'Mini-boronizations' used 1.8 g dTMB compared to full-bottle 9 g.
- Both surface %O and OII emission rose faster after 'mini-boronization', as expected from shorter erosion lifetime of thinner boronized layer

Conclusions:

- After boronization, surface oxygen, as measured by XPS, and OII 441 nm emission from plasma both increased with plasma exposure. H-mode achieved after full bottle boronization.
 nice correlation of surface composition and plasma performance !
- Deposition uniformity was improved by operating the glow discharge at low pressure.
- The deposition was enhanced by 20 30% in the region local to the gas injection port.
- But boron deposition in divertors relatively low (10s of monolayers).
- Considering to increase fraction of d-TMB/He from 5% to 10% 20% next year.
- Extensive program of surface analysis of samples retrieved from NSTX-U is underway

GDC Modeling; RFX, JET benchmarks

58th Annual Meeting of the APS DPP, San Jose CA, 'Advances in Boronization', C.H.Skinner et al., Nov 1, 2016

to 300K).

NSTX-U

40

20

60

distance (angle)

80

100

120

140

Boronization conditions:

- Typically Bay B electrode 540 V, 2.3 A Bay G electrode 530 V, 1.8 A
- One 9-g bottle d-TMB / per full boronization
- Gas mix: 5% d-TMB 95% He
- 75% carbonization 25% boronization
- Ion fluence = current x time, is close to total d-TMB + He atoms/mol used
- Vessel pressure set at 1.7 mtorr
- Nominal vessel area: 40 m²
- Average coverage would be ~ 1400Å but is not uniform
- Expected erosion rate: 1 10+ Å/s

58th Annual Meeting of the APS DPP, San Jose CA, 'Advances in Boronization', C.H.Skinner et al., Nov 1, 2016

Other machines, Options for more boron coverage:

- C-mod uses ECDC sweep in He/diborane (B₂H₆) (Lipschultz) Thickness: '1500-2000 Å assuming uniform deposition over 10m²
- DIII-D uses GD 90% He/ 10% diborane (B₂H₆) (Jackson) 'average 1000 Å thickness 90% B, 10% C film (AES)'
- JT60 GDC He/decaborane 70-g B₁₀D₁₄ lasted 50 shots (Nakano)
- Carborane: $C_2B_{10}H_{12}$ @ 180 C (solid at room temp) EAST, KSTAR; (Wu, Hong)
- **Conclude more boron needed in NSTX-U divertor:**
- Increase fraction of d-TMB from 5% to 10% ?
- Relocate GDC electrodes to divertor ?
 - need toroidal coverage convert select divertor tiles to anodes ?
- More boron rich gas e.g. B_2D_6 but toxic & explosive;
- Mega boronization ! just use more d-TMB ?