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NSTX-U Boronization

Boronization was main wall
conditioning technique in 2016

Trimethylboron ws dissociated in a
helium glow discharge. Forms a hard g

sputter resistant coating on PFCs.
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NSTX-U Glow Discharge

Glow Discharge Physics:

_ Bay B anode
A hollow-cathode discharge, glow

sustained mainly by ionization by secondary electrons emitted \

RF
antenna

from the vessel wall (cathode),
accelerated ballistically through a thin cathode sheath,
penetrating the plasma as a fast electron beam,

trapped by the cathode fall surrounding the plasma on all
sides.

The electric field distribution inside the plasma is controlled by
low-energy plasma bulk electrons.

The anode has a much lower surface area compared to the
cathode (vessel wall)

- leads to the formation of an anode glow and an order-of- e
magnitude higher ion flux near the anode. Sheath ionization in pump duct

Hagelaar Plasma Phys Contr F 57 (2015) 025008
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Most deposition at midplane

Deposition at midplane during boronization Deposition at top and bottom
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More divertor deposition @ lower pressure

16

GDC pressure 2 mtorr 4 mtorr

Deposition at top and bottom of
vessel increased at lower pressure

(longer mfp).
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®150° bottom QMB
= 120° top QMB

Angstroms
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Subsequent boronizations
used 1.7 mtorr.
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d-TMB injector
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More deposition near gas injector,
most deposition near electrode

o -
90 top inj. 1500 | =
QMB ¢ 150° mid inj
120° to ° ini
P 60° lower inj. £ 1,000
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| . N . ! . . Distance (m)
0 50 100 . _
Angstrom Deposition on the QMBs using only one GD electrode,
plotted as a function of gistance to the electrode in use.
Top injector enhances top deposition by 30%. The high point at 1,515A is deposition on the 30° QMB

Lower injector enhances bottom deposition by 21%  when the nearby 30° GD electrode is in use.

@NSTX-U 58t" Annual Meeting of the APS DPP, San Jose CA, ‘Advances in Boronization’, C.H.Skinner et al., Nov 1, 2016 6/10



Surface chemistry monitored with MAPP

Materials Analysis Particle Probe (MAPP) X-ray Photoelectron Spectroscopy
JP Allain, B Heim, F Bedoya, R Kaita et al...
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MAPP probe revealed Oll emission correlated
with surface O rise after boronization
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Surface %0 and Oll emission rose faster after ‘mini-boronization’
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Conclusions:

» After boronization, surface oxygen, as measured by XPS, and Oll 441 nm emission from
plasma both increased with plasma exposure. H-mode achieved after full bottle boronization.
- nice correlation of surface composition and plasma performance !

 Deposition uniformity was improved by operating the glow discharge at low pressure.
» The deposition was enhanced by 20 — 30% in the region local to the gas injection port.

 But boron deposition in divertors relatively low (10s of monolayers).

« Considering to increase fraction of d-TMB/He from 5% to 10% - 20% next year.

+ Extensive program of surface analysis of samples retrieved from NSTX-U is underway
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Backups
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GDC Modeling; RFX, JET benchmarks

G J M Hagelaar et af
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Figure 1. Electron mfps in molecular hydrogen compared with
various system dimensions, as a function of electron energy and for
different gas pressures (these are standard pressures corresponding
to 300K).
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Boronization conditions:

- Typically Bay B electrode 540 V, 2.3 A e P
Bay G electrode 530 V, 1.8 A RGA during Di-methyl boron
* One 9-g bottle d-TMB / per full boronization He/d-TMB B D,C
- Gas mix: 5% d-TMB 95% He pumpout £ _
8 ™ D
* 75% carbonization 25% boronization 5 | |
* lon fluence = current x time, is close to é 409 D,C
total d-TMB + He atoms/mol used 8
« Vessel pressure set at 1.7 mtorr 209 ' gg;gnneth.yl
« Nominal vessel area: 40 m? Jf Ul -
 Average coverage would be ~ 1400A RGA during e s s s oo
but is not uniform He/d-TMB 2 00E.03 tomicmass
« Expected erosion rate: 1 — 10+ A/s GDC
0.00E+00 Smaleldiolse v
| 40 45 50 55 amu 60 65 7
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Other machines, Options for more boron coverage:

. C-mod uses ECDC sweep in He/diborane (B,Hg) ( Lipschultz)
Thickness: ‘1500-2000 A assuming uniform deposition over 10m?

. DIII-D uses GD 90% He/ 10% diborane (B,H;) (Jackson)
‘average 1000 A thickness 90% B, 10% C film (AES)’

« JT60 GDC He/decaborane - 70-g B,,D,, lasted 50 shots (Nakano)

«  Carborane: C,B,,H;, @ 180 C (solid at room temp) EAST, KSTAR; (Wu, Hong)
Conclude more boron needed in NSTX-U divertor:

. Increase fraction of d-TMB from 5% to 10% ?

. Relocate GDC electrodes to divertor ?
- need toroidal coverage - convert select divertor tiles to anodes ?

. More boron rich gas e.g. B,Dg - but toxic & explosive;
. Mega boronization ! - just use more d-TMB ?
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