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Most models on L-H transition have two parts

1.Generation of sheared flow. 

2.Suppression of turbulence by flow shear.

2

L-H transition theories are summarized 
Connor and Wilson PPCF 42 R1 (2000) Review paper.
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Some experimental investigations showed a transfer of energy 
from turbulence to mean flow

Studies using Langmuir probes provided evidence that nonlinear exchange of kinetic energy 
between small scale turbulence and edge zonal flows. 

Recent work on C-Mod using gas-puff imaging (GPI) provided a timeline for the L-H transition:

•First peaking of the normalized Reynolds power 
•Then the collapse of the turbulence 
•Finally the rise of the diamagnetic electric field shear  

On DIII-D, heating power increases the energy transfer from turbulence to the poloidal flow. 

However, in JET, near the edge shear layer, no evidence of energy transfer from turbulence to 
flows was found.   
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Manz et al. PoP 19 072311

Cziegler et al. PPCF 2014

Sanchez et al. JNM 2005

Yan et al. PRL 2014

See Review paper Tynan PPCF 2016

NSTX results are inconsistent with energy transfer to flows directly depletes the turbulent fluctuations.

Xu et al. NF 54 (2014)
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Gas-puff imaging diagnostic is central to the NSTX 
L-H transitions analysis

•GPI provides edge turbulence images 

- Temporal resolution ~ 2.5 𝜇s 

-Spatial resolution ~ 1 cm
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Discharge characteristics (total of 17): 

NBI-Heated: 138113:138119 
Ohmically-Heated: 141745:141751(not shown here) 
RF- Heated: 141919:141922, 142006(not shown here)
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Analysis is radially localized near the GPI maximum 
level of fluctuations
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There is no significant change of turbulence quantities preceding  
the L-H transition but clear drop in fluctuation levels across the transition
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• Turbulence quantities changes are similar to 
previous observations.

Time rel. to L-H transition [ms ]

R -Rsep = -1 cm 

Can direct energy transfer from turbulence to 
mean flow explain the drop in fluctuation levels?

Auto-correlation time [μs]
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Orthogonal dynamic programming (ODP) 
applied to GPI data for imaging 
velocimetry

•ODP enables to reconstruct a 2D velocity field. 
–Comparison with TDE & Fourier type velocimetry shows 
~80% correlation.  

•Caveat:  
–Velocimetry techniques show only velocities normal to the 
intensity iso-contours. 

–This caveat is shared by all velocimetry approaches.
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S Banerjee et al., Rev. Sci. Instum. 86, 033505 (2015) 
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We test the suppression of turbulence via energy 
transfer from turbulence to mean flow

Evaluate the sign of production term: does turbulence drive flows or vice versa?  

Is the absolute value of the production term big enough to explain the rate of 
change of the thermal free energy? 

Does the energy in the mean flow increase as much as the turbulence energy 
drops? [see backup]
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Energy transfer direction is determined using the 
production term

In order to deplete the turbulence the production term must be positive.
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In NSTX, energy is transferred from mean flows to 
turbulence
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• We observe energy transfer from 
zonal flow to turbulence. 

• Inconsistent with the turbulence 
depletion hypothesis prior to the 
L-H transition.
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We test the suppression of turbulence via energy 
transfer from turbulence to mean flow

Evaluate the sign of production term: does turbulence drive flows or vice versa?  

Is the absolute value of the production term big enough to explain the rate of 
change of the thermal free energy? 

Does the energy in the mean flow increase as much as the turbulence energy 
drops?
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Production term is much less than the observed rate of change of the thermal free energy

In NSTX, energy is transferred from mean flows to turbulence

Given that the sign of the production is of  order-unity,  
we now test the rapid turbulence suppression at the L-H transition 

using order of magnitude estimates
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Production term is much less than the observed rate of change of the thermal free energy

In NSTX, energy is transferred from mean flows to turbulence



Recall: This energy balance between flow and 
turbulence
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︸Thermal free energy is an additional reservoir 
for the turbulence energy
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Compare the rate of change of the thermal free energy over the L-H 
transition to the absolute value of the production term
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•Ratio NEEDS to be around 1 to have 
turbulence suppression. 

•Ratio is much less than 1 so inconsistent 
with the turbulence depletion.

GO6.00010 - Energy Dynamics L-H - Diallo

Production term is much less than the observed 
rate of change of the thermal free energy
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We test the suppression of turbulence via energy 
transfer from turbulence to mean flow

Evaluate the sign of production term: does turbulence drive flows or vice versa?  

Is the absolute value of the production term big enough to explain the rate of 
change of the thermal free energy? 

Does the energy in the mean flow increase as much as the turbulence energy 
drops?

17

Production term is 100x smaller than  
the observed rate of change of the thermal free energy
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NSTX results do not support that energy transfer to 
flows directly depletes the turbulent fluctuations
•We consider the following energy balance to evaluate the turbulence depletion: 
-Most experimental results neglected the thermal free energy 

The turbulence quantities change across at the L-H transition but not before, so the changes do 
not help identify the L-H mechanism. 
Energy-transfer mechanism appears much too weak to explain the rapid turbulence suppression 
at the L-H transition. 
-  Uncertainties in 2D velocimetry may be order unity, but the energy transfer mechanism is ~100x too 

small to explain the turbulence suppression.  
-Future work will attempt to quantify the uncertainties in 2D velocimetry.
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Supplementary material

19
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We test the suppression of turbulence via energy 
transfer from turbulence to mean flow

Evaluate the sign of production term: does turbulence drive flows or vice versa?  

Is the absolute value of the production term big enough to explain the rate of 
change of the thermal free energy? 

Does the energy in the mean flow increase as much as the turbulence energy 
drops?
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Production term is much less than the observed rate of change of the thermal free energy



Does the zonal flow absorb a significant fraction of 
the total turbulence energy?

Stoltzfus-Dueck, PoP 23 054505 (2016)

For zonal flows to take most of the turbulence energy:  
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Kinetic energy in the mean flow is always much smaller 
than the L-mode thermal free energy in all discharges
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The kinetic energy in the mean flow 
remains smaller than the thermal free 
energy at two radii (1 cm & 3.5 cm) 
inside the LCFS
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The sum of the two turbulent fluctuation energies needs 
to be exhausted in order to deplete the turbulence

24

Thermal free energy Zonal ExB energy non-zonal ExB energy 

Production term

Electron parallel conduction 
fast timescale 

For energy transfer to mean flows to deplete 
the turbulence, we must have 

slow time scale

Moves as a single unit  
given the fast time scales

STOLTZFUS-DUECK, POP 23 054505 (2016)
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Radial gradient of the poloidal velocity
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•   Reynolds decomposition should be applied to the whole flux surface. 
•   However, GPI view is limited to a 30 x 24 cm patch of the flux surface 

–The flux-surface average is replaced by a temporal average 

•   For each velocity component,
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Approach for the decomposition of the velocity 
field components

26

This cutoff frequency was chosen to include the poloidally oscillating flow (2 - 5 kHz) 
described in ref. Zweben et al. PoP (2010) into the non zonal component. 

Variations (1 - 2 kHz) around this cutoff do not qualitatively change the results presented here.

vi = v̄i + ṽi, i 2 [r, ✓] , 8t
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Production term conservatively transfers energy 
between non-zonal and zonal energy

Equations capture the energy transfer that plays a key role in many models 
of the L-H transition.
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@t (En + E⇠) =
R
dV

h
Q
Ln

� ⌘j2 � Te0 h�i(ne)� n0mi hṽrṽ✓i @r hv̄✓i
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Energy is transferred from mean flows to 
turbulence

28
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The inferred absolute shear in the mean flow decreases 
across the L-H transition, which is inconsistent with the shear 
model
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Reynolds stress-driven mean flow and the measured 
mean flow are of the same order of magnitude

•Crude estimate the Reynolds stress-driven flow  
-Assuming flow damping at ion transit rate 

•Contribution of the Reynolds stress to the 
mean flow cannot necessarily be discarded. 
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Poloidal Flow
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