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Motivation

» In 2008 campaign, NSTX achieved completely ELM-free H-mode
discharge after using Li-coated divertor and wall.

> The pedestal profiles of pressure, and the values of Z, ;¢ have been
noticeably changed.

» The mechanism behind this ELM-suppression is studied in context of
extended magneto-hydrodynamic (MHD) modeling.




Li Coating leads to ELM suppression in NSTX
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Changes in profiles and Z,. value after Li-coating

(Red curve — Post-Lithium, blue curve-Pre-Lithium)
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ELITE analysis indicates post-lithium NSTX

pedestal more stable due to profile changes
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The goal and Procedure of study

= s profile modification alone sufficient to stabilize ELMs in NSTX?
= Or, are there any direct impurity effects (Z. ¢, radiation, rotation) on ELMs?

Steps of Analysis:

= |deal MHD analysis of Pre-lithium/Post-lithium discharge.

» Redo of this analysis including 2fluid-correction terms as Hall effect, electron
diamagnetic effect and gyro-viscosity.

= Resistive extended MHD analysis with Spitzer model and scanning of Z ¢,
parameters consistent with NSTX experimental data.




NIMROD analysis: Extended MHD equation solver

ong

Continuity Equation: +V-(nV)=V-(DVn,) , n,=londensity, n, ~n,

Momentum Equation oV
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Profile Differences between Pre-Lithium and Post-Lithium
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Ideal 2-fluid Model predicts both Pre/Post cases be unstable
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What else factor might play catalystic role behind stabilization?
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Edge localized modes have resolved structures
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Edge localized modes have resolved structures
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Enhanced resistivity causes stabilization of low-n modes
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1, = resistivity at magnetic axis
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The numerical results are well converged
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Resistive stabilization on low-n ELMs in NSTX is general!
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Summary & Conclusion

» Resistive stabilizing effects on low-n ELMs have been found in 2-fluid model
using NIMROD calculations.

» The profile changes alone may not be sufficient for explaining the Li-induced
ELM suppression in NSTX.

> Resistive stabilization of low-n ELMs due to the enhancement in Z ¢ may
explain the Li-induced ELM suppression in NSTX.




Acknowledgement

» Dr. Charlson Kim for helpful discussions.

» NIMROD team for timely support.
https://nimrodteam.org/team.html

» National Energy Scientific Computation Centre (NERSC) for access to super
computing facility.

» University of Science and Technology of China super computer center’s
support on computational facility.

Thanks for your Kind attention

11/1/2016 San Jose, USA 17



