Electron Temperature Evolution During Local Helicity Injection on the Pegasus Toroidal Experiment

D.J. Schlossberg,

J.L. Barr, G.M. Bodner, M.W. Bongard, R.J. Fonck, J.M. Perry, J.A. Reusch, and C. Rodriguez Sanchez

58th Annual Meeting of the APS Division of Plasma Physics

> San Jose, CA November 1, 2016

Pegasus is a Compact, Ultralow Aspect Ratio Spherical Tokamak

Research presented here includes:

- 1st Thomson scattering T_e(R), n_e(R) in LHI plasmas
- Kinetic measurements for high β_t

LFS Local Helicity Injectors HFS Local Helicity Injectors

Experimental Parameters

А	1.15 – 1.3
R(m)	0.2 – 0.45
l _p (MA)	≤ .21
ĸ	1.4 – 3.7
β _t (%)	≤ 100

 0-D power-balance model¹ predicts I_p(t) from Local Helicity Injection (LHI):

$$\int_{p} \left[V_{LHI} + V_{IR} + V_{IND} \right] = 0$$

$$\int_{e} -3/2$$

- Projected T_e , I_p , may vary if:
 - Helicity drive dominates $(V_{LHI} >> V_{IND})$
 - Inductive drive dominates $(V_{LHI} \ll V_{IND})$
- Exploring T_e behavior as dominant drive method varies

- Plasma position and shape evolve inward from outboard injectors
 - Shape evolution generates V_{IND}
 - $V_{IND} > V_{LHI}$ during high-I_p phase

- Peaked T_e(R) during drive phase (connected)
 - Not strongly stochastic
 - After disconnect radial compression drives skin current
- Core n_e > 10¹⁹ m⁻³, T_e ≥ 100 eV provides target for subsequent CD

- Same injection location but static, circular plasmas at large R_{maj}
 - Lower performance due to shape constraints
- $V_{IND} = 0, T_e(0) \sim 80 \text{ eV}$
- T_e(R) remains peaked while driven solely by edge LHI

 $T_e(R) > 85 eV$ with majority LHI-drive

HFS Injection Gives Peaked $T_e(R)$ for Sustained, Highly Elongated Discharge

- $T_{e}(0) \ge 100 \text{ eV}$
- \overline{n}_{e} increasing to ~1.2 x 10^{19} m^{-3}

- T_e, n_e comparable to Ohmic plasmas in Pegasus
- V_{LHI} -driven throughout

LHI Plasmas Provide Targets for Subsequent Current Drive Schemes

l_p [MA]

. E

- Coupling to aux. drive is sensitive to I_p ramp-rate:
 - $J(\psi)$ too hollow: ineffective coupling
 - J(ψ) too peaked: MHD unstable
- Pegasus aux. drive = Ohmic

- Upcoming campaign: characterize $T_{e},\,n_{e}$ through LHI-OH transition

·V_{loop} [V]

HFS Injection at low TF Provides Non-Solenoidal Sustainment at High I_N

- HFS LHI development campaign provides unique operation space
 - Low $I_{TF} \sim 0.6 \ I_p$
 - $I_N = 5A \frac{I_p}{I_{TF}} > 10$ accessible
- Enables high $\beta_t access^1$
 - Aided by anomalous ion heating
- Kinetic constraints on magnetic equilibrium fits²
 - $P_{tot}(0)$
 - $-\,$ Edge location defined by $T_{e}\, profiles$

• Sample magnetic reconstruction at t = 24.5 ms, using kinetic constraints

Equilibrium Parameters Shot 87332, 24.50 ms				
l _p	102 kA	R_0	0.317 m	
β_t	0.95	а	0.263 m	
ℓ_{i}	0.22	Α	1.21	
β_p	0.45	κ	2.6	
Ŵ	545 J	δ	0.54	
B_{T0}	0.0249 T	q ₉₅	7.24	

• β_T for sustained, low- ℓ_i , high- κ , LHI-driven plasmas

- Local Helicity Injection (LHI) sustains ~100 eV T_e , moderately-high n_e
- No strong $T_e(R_{maj})$ dependence on LHI location and ratio of LHI-to-inductive drive
- Effective startup target for direct OH coupling (Pegasus); Future to NBI (NSTX-U)?

• Very high β_t confirmed by kinetic measurements

Backups: Taylor Relaxation & Helicity Balance

Physics Models Provide a Predictive Understanding for LHI Startup

- 1. Taylor relaxation, helicity conservation
 - Steady-state maximum I_p limits

- 2. 0-D power-balance $I_p(t)$
 - $\,V_{\text{\tiny LHI}}$ for effective LHI current drive

$$I_p \left[V_{LHI} + V_{IR} + V_{IND} \right] = 0 \ ; \ I_p \leq I_{TL}$$

- 3. 3D Resistive MHD (NIMROD)
 - Physics of LHI current drive mechanism

Reconnecting LHI Current Stream

Helicity evolution and related plasma current depends strongly on T_e

• In a tokamak, fields and currents are oriented such that helicity injection drives toroidal current:

- Formulation analogous to Poynting's Theorem for energy
- Helicity dissipation term depends on resistivity¹, which in turn depends on T_e :

$$\eta_{||}^{(Sp)} = 0.51 \frac{m_e}{n_e e^2 \tau_e} = 0.51 \frac{m_e^{1/2} e^2 \ln \Lambda}{3\epsilon_0^2 \left(2\pi T_e\right)^{3/2}}$$

• Thomson scattering will be used to quantify T_e, and thereby helicity dissipation

Helicity is a conserved quantity in magnetic systems, and directly relates to current drive

Helicity describes linkage between magnetic flux tubes:

$$K = \int \mathbf{A} \cdot \mathbf{B} dV$$

 Helicity is conserved on resistive time scales even when magnetic energy is not

• System's minimum energy state, *given constant helicity constraint*, can be represented by:

 $\nabla \times \mathbf{B} = \lambda \mathbf{B}$

- λ represents system eigenstates ("Taylor states")
- Unstable systems relax to this minimum energy state

Backups: Power Balance Model

0-D LHI model predicts $I_p(t)$ based on lowest of two limits:

• Poynting's Theorem at plasma boundary sets $I_p(t)$:

$$I_{p}V_{s} \approx \iiint \frac{\partial}{\partial t} \left(\frac{B_{\theta}^{2}}{2\mu_{0}} \right) dV + I_{p}^{2}R_{p} - I_{p}V_{LHI}$$
Plasma
surface-
voltage
Internal magnetic
energy storage
Resistive
Dissipation
Current drive (LHI)

• Taylor relaxation limit strictly enforced as maximum Ip

Power Balance Model Incorporates Analytic Plasma Inductance Formulae

$$I_{p}\left[\frac{V_{PF}}{V_{FF}} + V_{geo} - V_{W_{m}} - V_{IR} + V_{LHI}\right] = 0$$
Analytic low-A descriptions of L_{p}^{*}, B_{z}^{**}

$$V_{PF} = -\sum_{coils} \frac{d}{dt} \left[\psi_{PF}\right] \approx -\frac{\partial}{\partial t} \left[M_{V} \pi R_{0}^{2} B_{V}\right]_{R_{0}}$$

$$B_{V} = -\frac{\mu_{0}I_{p}}{4\pi R_{0}} \left\{\frac{1}{\mu_{0}} \frac{\partial L_{e}}{\partial R} + \frac{\ell_{i}}{2} + \beta_{p} - \frac{1}{2}\right\}$$

$$M_{V}(\varepsilon,\kappa) = \frac{(1-\varepsilon)^{2}}{(1-\varepsilon)^{2}c(\varepsilon) + d(\varepsilon)\sqrt{\kappa}}$$

$$c(\varepsilon) = 1 + 0.98\varepsilon^{2} + 0.49\varepsilon^{4} + 1.47\varepsilon^{6}$$

$$M_{IR} = I_{p}R_{p} = I_{p}\left(\frac{\langle \eta_{spitzer} \rangle 2\pi R_{0}}{A_{p}}\right)$$

$$V_{IR} = I_{p}R_{p} = I_{p}\left(\frac{\langle \eta_{spitzer} \rangle 2\pi R_{0}}{A_{p}}\right)$$

$$V_{geo} = -\frac{d}{dt} \left[L_{e}I_{p}\right] = -L_{e}\frac{dI_{p}}{dt} - I_{p}\frac{dL_{e}}{dt}$$

$$c(\varepsilon) = (1 + 1.81\sqrt{\varepsilon} + 2.05\varepsilon)\ln\left(\frac{8}{\varepsilon}\right)$$

$$L_{e} = \mu_{0}R_{0}\frac{a(\varepsilon)(1-\varepsilon)}{1-\varepsilon + \kappa b(\varepsilon)}$$

$$c(2.0 + 9.25\sqrt{\varepsilon} + 1.21\varepsilon)$$

$$b(\varepsilon) = 0.73\sqrt{\varepsilon}(1 + 2\varepsilon^{4} - 6\varepsilon^{5} + 3.7\varepsilon^{6})$$

* S.P. Hirshman and G.H. Nielson 1986 Phys. Fluids 29 790
 ** O. Mitarai and Y. Takase 2003 Fusion Sci. Technol.
 S. Ejima et al 1982 Nucl. Fusion 22 1313
 J.A. Romero and JET-EFDA Contributors 2010 Nucl. Fusion 50 115002

0-D Model Takes Plasma, Injector Parameters as Inputs

- Initial condition: $I_p(t_0)=I_{TL}$
- Shape(t)
 - $R_0(t), a(t), \kappa(t), \delta(t)$
 - Vertical symmetry
- < η >(t), $\ell_i(t)$, $\beta_p(t)$
 - Constant < η > assumed
 - Spitzer
 - $-\beta_p=0$
 - − l_i dropping: 0.5 → 0.2
- Injector Inputs:
 - $\ A_{inj}(t), \ V_{inj}(t), \ R_{inj}(t)$

ShapeFIT: Fast Boundary Reconstruction Code Provides Shape(t)

- Plasma treated as 4-6 filaments
 - Positions, currents fit to magnetics
- Wall currents modeled
 - Same model used in KFIT equilibrium code
- Validating against reconstructions
 - $R_0 \pm 1.5$ cm
 - $-a \pm 1.5$ cm
 - κ ± 15%

J.L. Barr, APS DPP 2015 $\delta\pm25\%$

Power Balance Model Provides Predictive Tool for $I_{p}(t)$

0.05

0.00

- $I_p \left[V_{LHI} + V_{IR} + V_{IND} \right] = 0$
- V_{LHI}: effective drive
- V_{IR}: resistive dissipation
- V_{IND}: analytic, from shape(t)
- Taylor relaxation limit: $I_p \leq I_{TL}$

V_{IND} dominates current drive

25

Time [ms]

30

35

Eidietis et al., J. Fusion Energ. 26, 43 (2007) S.P. Hirshman and G.H. Nielson 1986 Phys. Fluids 29 790 O. Mitarai and Y. Takase 2003 Fusion Sci. Technol.

Battaglia et al., Nucl. Fusion 51, 073029 (2011)

20

RJF IAEA FEC2016

Understanding Confinement Scaling in LHI is Critical for Predicting to NSTX-U and Beyond

- Rapid improvement with V_{LHI}
 under favorable scalings
 - Possible reduction in injector requirements

 Current projections: I_p~1 MA on NSTX-U accessible

 Confinement studies needed when sustained by V_{LHI}

Backups: High Beta

Backups: High Beta

LHI Provides Access to High- β_T at A ~ 1 with Non-Solenoidal Sustainment and Anomalous Ion Heating

- Equilibrium reconstructions estimate β_T (~<P>/B_{T0}²)
 - Matches external magnetics, $P_{tot}(0)$, and edge in $T_e(R)$
 - Includes anomalous T_i(0)
 - Some caveats for these initial results
 - Assumes closed flux surfaces inboard of injectors
 - Role of SOL edge current
 - Magnetics-only reconstructions scaled via comparison to those with kinetic constraints
 - Need full kinetic profiles in future
- High β_T plasmas often terminated by disruption
 - n = 1, low-m precursors
- Expands accessible high I_N , β_T space for tokamak stability studies at extreme toroidicity
 - Campaign underway to document, extend to higher Ip
 - Improved LHI injector hardware to increase I_p, B_{TF} access

Backups: Ion Heating

Reconnection-driven Ion Heating Gives $T_i > T_e$ During LHI

- Impurity $T_i(0) \sim 100 500 \text{ eV} > T_e$ routinely observed during LHI
- Continuous ion heating from reconnection
 between collinear current streams
 - No effect on current drive efficiency
 - Significant ion heating (~ few 0.1 MW)

