58th APS-DPP Meeting, San Jose, CA, USA 31 October - 4 November 2016

Quiescence of Magnetic Braking and Non-resonant Field Control in KSTAR

<u>J.-K. Park</u>¹, Y. In², K. Kim³, Y. M. Jeon², N. C. Logan¹, Z. R. Wang¹, J. E. Menard¹, W. H. Ko², H. H. Lee², J. H. Kim¹, Y. S. Park⁴, KSTAR Team

¹Princeton Plasma Physics Laboratory, Princeton, USA ²National Fusion Research Institute, Daejeon, Korea ³KAIST, Daejeon, Korea ⁴Columbia University, New York, USA

Motivation to quiescent magnetic braking

- 3D field in tokamaks can provide various utilities depending on field spectrum
- Resonant vs. Non-resonant Magnetic Perturbation (RMP vs. NRMP)
 - RMP can control ELMs by particle and heat transport
 - NRMP can modify rotation by momentum transport (NTV or magnetic braking)
- Reality is mixture, due to limited coils
 - Many poloidal modes, strongly coupled
- Excluding one for the other is important
 - To minimize unwanted effects
 - To isolate and understand mechanism

KSTAR IVCC -90p to #15433.08000

<u>Quiescent magnetic braking – NRMP applications without RMP effects</u>, to control local rotation/shear without disturbing particle or heat transport channel
NFRIOPPL

KSTAR provides great opportunity to nail down resonant effects in magnetic braking

- KSTAR IVCC consists of 3 rows of internal coils like ITER: Top, Middle, Bottom coils
- Spectral diversity for n=1 is greater than any other devices, enabling n=1 RMP ELM control
 - In magic window of coil configuration space
 - By isolating edge resonant coupling from core
- NRMP is even more diversified, giving great chance to study remnant RMP effects

Primary effects induced by KSTAR n=1 vs. (I, φ) – subset of coil configuration

* This is n=1 study, but remnant RMP effects other than locking is also important for n>1

Geometrics for non-resonance

- Two most intuitive ways to generate non-resonant field:
- Make long poloidal wavelength in perturbation : 0° phasing: m=1 dominant field
- Place perturbation pattern across field lines : -90°(270°) phasing: RMP-orthogonal field
 - * Phasing: Toroidal phase shift from top to middle (identically from middle to bottom)

RMP-orthogonal field can be highly quiescent in magnetic braking as demonstrated in BH resonance studies

- RMP-orthogonal field (-90° phasing)
- Unique in KSTAR as 3 rows of coils are needed
- Successfully produced quiescent magnetic braking for low $q_{95} \approx 4$, weakly shaping ($\kappa \approx 1.4$)
- Used to study 'pure' NTV effects and bounce-harmonic rotation resonance in NTV

Further evidences show quiescence of magnetic braking requires fine matching between phasing and target

- Optimal phasing for quiescent braking varies sensitively (-90° vs. 0° issue)
 - -90° phasing \rightarrow 0° phasing when q₉₅=4 \rightarrow 6, and shaping becomes stronger

Similar trend found in continuous phasing scan

- Continuous phasing scan using 3 rows of coils also shows
 - − -90° phasing → 0° phasing when q_{95} =4 → 6

NFRI

7

AR

External kink coupling gives qualitative explanation, implying importance of small remnant RMP control for NRMP

- Resonant amplification is driven by well-known external kink coupling (m>nq)
- If q in the edge increases

NF

- Low m modes in 0° phasing move away from kink, becomes more non-resonant
- m<0 modes in -90° phasing also move away, but small secondary m>0 modes approach

0° phasing

IPEC and PENTRC modeling used to evaluate resonant field and NTV, and figure of merit for quiescent NTV braking

• Figure-of-merit (FOM) for braking: Non-resonant vs. resonant torque $F_{QM} = \frac{T_{NTV}}{T_{NTV}} \propto \frac{T_{NTV}}{\Sigma \delta B_{mm}^2}$

NFR

• IPEC-PENTRC is used for NTV simulation including bounce and transit resonant effects

Modeled F_{QM} shows optimal phasing variations for quiescent braking consistent with observations

- Optimal F_{QM} moves to higher phasing (e. g. -90° \rightarrow 0°) as q_{95} increases
- Optimal F_{QM} is also shifted to higher phasing when shaping increases
- F_{QM} model gives prediction consistent with observation

NFRI

- with new details, e.g. 2^{nd} window for q_{95} >7.0, variation due to ω_E =0 at q surfaces

 F_{QM} modeled by IPEC-PENTRC

Experimental validation for F_{QM} towards non-resonant field control for quiescent magnetic braking

- Empirically F_{QM} is about momentum vs. particle/heat level changes at the saturation level

 Modeled F_{QM} is however based on torque at the onset, which will drive rotation and energy degradation non-linearly

 $F_{QM}^{Exp} = \frac{\Delta(nV)/nV}{\Delta(\Sigma nT)/\Sigma nT}$

$$F_{QM}^{Exp} = \frac{\Delta(nV)/nV}{\Delta(\Sigma nT)/\Sigma nT} = \alpha \left(F_{QM}^{Model}\right)^{\beta}?$$

 Quantitative comparisons with fine tuning for non-resonant coil configurations are important for physics validation and prediction for F_{QM}

NFR

Summary and Conclusion

- Versatile 3-rows of coils in KSTAR provide various n=1 NRMPs with fine tuning capability on field spectrum
- Optimal n=1 phasing for quiescent braking varies with q_{95} and shaping
- F_{QM}=T_{NTV}/T_{JXB} modeling with IPEC-PENTRC explained empirical trends very well, including -90° vs 0° phasing issue, and predicted new details
- This study shows importance of remnant RMP control in NRMP applications, and modeled and validated F_{QM} can be used to predict quiescence in magnetic braking of rotation/shear

