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Motivation to quiescent magnetic braking

3D field in tokamaks can provide various utilities depending on field spectrum

Resonant vs. Non-resonant Magnetic Perturbation (RMP vs. NRMP)
— RMP can control ELMs by particle and heat transport
— NRMP can modify rotation by momentum transport (NTV or magnetic braking)

Reality is mixture, due to limited coils
— Many poloidal modes, strongly coupled
Excluding one for the other is important
— To minimize unwanted effects
— Toisolate and understand mechanism KSTAR IVCC -90p to #15433.08000

e Quiescent magnetic braking — NRMP applications without RMP effects, to
control local rotation/shear without disturbing particle or heat transport channel
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KSTAR provides great opportunity to nail down

resonant effects in magnetic brakin

 KSTAR IVCC consists of 3 rows of internal coils Primary effects induced by KSTAR n=1
. . . vs. (1,0) — subset of coil configuration
like ITER: Top, Middle, Bottom coils () J

90

105

e Phasing @1=@ys

» Spectral diversity for n=1 is greater than any

other devices, enabling n=1 RMP ELM control
— In magic window of coil configuration space
— By isolating edge resonant coupling from core

* NRMP is even more diversified, giving great SR
chance to study remnant RMP effects
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Geometrics for non-resonance

 Two most intuitive ways to generate non-resonant field:
- Make long poloidal wavelength in perturbation : 0° phasing: m=1 dominant field
— Place perturbation pattern across field lines : -90°(270°) phasing: RMP-orthogonal field

*
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RMP-orthogonal field can be highly quiescent in magnetic

braking as demonstrated in BH resonance studies

RMP-orthogonal field (-90° phasing)
Unique in KSTAR as 3 rows of coils are needed
Successfully produced quiescent magnetic braking for low qq.=4, weakly shaping (k=1.4)
Used to study ‘pure’ NTV effects and bounce-harmonic rotation resonance in NTV
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Further evidences show quiescence of magnetic braking requires

fine matching between phasing and target

* Optimal phasing for quiescent braking varies sensitively (-90° vs. 0° issue)

- -90° phasing — 0° phasing when q4.=4 — 6, and shaping becomes stronger
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Similar trend found in continuous phasing scan

e Continuous phasing scan using 3 rows of coils also shows
— -90° phasing — 0° phasing when qqc=4 — 6

(a) Plasma current and NBI (a) Plasma current and NBI
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External kink coupling gives qualitative explanation, implying

importance of small remnant RMP control for NRMP

* Resonant amplification is driven by well-known external kink coupling (m>nq)
* If g in the edge increases

— Low m modes in 0° phasing move away from kink, becomes more non-resonant
—  m<0 modes in -90° phasing also move away, but small secondary m>0 modes approach

0° phasing -90° phasing
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IPEC and PENTRC modeling used to evaluate resonant field and

NTV, and figure of merit for quiescent NTV braking

: : : T T
* Figure-of-merit (FOM) for braking: Non-resonant vs. resonant torque F,, = TNTV oc zng;
JXB mn

e |IPEC-PENTRC is used for NTV simulation including bounce and transit resonant effects
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Modeled Fng shows optimal phasing variations

for quiescent braking consistent with observations

* Optimal Fy,, moves to higher phasing (e. g. -90° — 0°) as qq5 increases
* Optimal Fy,, is also shifted to higher phasing when shaping increases
* Fqu model gives prediction consistent with observation
- with new details, e.g. 2" window for g4:>7.0, variation due to w.=0 at q surfaces

Weakly
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Strongly
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Experimental validation for F,, towards

non-resonant field control for quiescent magnetic braking

* Empirically Fg,, is about momentum vs. particle/heat level changes at the saturation level

Ep A(nV)/nV
oM A(ZnT)/=nT

—> Empirical optimal phasing
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* Modeled Fy,, is however based on torque at
the onset, which will drive rotation and energy
degradation non-linearly
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* Quantitative comparisons with fine tuning for ~90 —75 60 —45 30 -15 0 15
. . . . Phasing
non-resonant coil configurations are important |
for physics validation and prediction for F,,
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Summary and Conclusion

 Versatile 3-rows of coils in KSTAR provide various n=1 NRMPs with fine
tuning capability on field spectrum

* Optimal n=1 phasing for quiescent braking varies with g5 and shaping

* Fom=Tan/Tixe modeling with IPEC-PENTRC explained empirical trends very
well, including -90° vs 0° phasing issue, and predicted new details

* This study shows importance of remnant RMP control in NRMP
applications, and modeled and validated F,, can be used to predict
quiescence in magnetic braking of rotation/shear
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