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Power exhausted challenges on the road to a fusion reactor  

•  Erosion caused by ELM energy bursts can reduce significantly the 
lifetime of plasma facing components (PFCs) in ITER [Loarte, PPCF (2003)] 

-  Need for ELM control techniques 

•  Studies worldwide have demonstrated that ELMs can be suppressed by 
relatively small non-axisymmetric resonant magnetic perturbations 
-  These studies have led to the addition of ELM control coils to ITER 

[Evans, PPCF (2015)] 

•  ITER has to demonstrate sustained burning plasma operation with Q > 10 
while preserving the integrity of the PFCs 
-  More than 60% of the power crossing the LCFS has to be radiated in 

the divertor [Pitts, Physica Scripta (2009)] 

•  In DEMO and future fusion power plants, this fraction must be > 90%  
-  Still unclear if these conditions can be achieved in reactor-sized 

machines while operating in H-mode [Kotschenreuther, Phys. Plasmas (2007)] 
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Snowflake (SF) divertor is proposed as an exhausted 
solution for DEMO 
•  Alternative solutions have to be researched to mitigate the risk that 

highly radiating regimes may not be extrapolated towards DEMO 
-  The SF is one of several alternative divertor configurations [D.D. Ryutov, 

Phys. Plasmas (2007)] 

•  SF is a 2nd order null-point:  
-  In practice always two 1st order null-points 
-  Larger region of low Bp near the null-point 

+  Increases connection length L|| 

+  Increases divertor volume Vdiv 

•  Potential advantages 
-  Greater L|| decreases target temperature 
-  Greater Vdiv may increase power and momentum losses 
-  Greater L|| broadens the SOL 
-  Lower Bp may increase cross-field transport and broaden SOL 

€ 

∇Bp = 0Bp = 0 and 
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ELM control coils and SF divertor will have to operate 
simultaneously in future fusion power plants 

•  ELM control coils and SF divertor are two potential solutions proposed to 
solve two separate outstanding issues on the road to a fusion reactor 

•  The SF configuration is expected to be more susceptible to non-
axisymmetric perturbations due to its lower Bp in the null-point region 

 

 
 
•  In a reactor, these two solutions would have to operate simultaneously 

-  Needs to investigate their compatibility to identify possible conflicts 
that could prevent them from operating simultaneously 

B p
  (

T)
 

Single-Null Snowflake  
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•  Introduction 

•  The equilibrium properties of the NSTX-U snowflake configuration 
 
•  The M3D-C1 simulations of the NSTX-U snowflake divertor 

-  The M3D-C1 code 
-  The plasma response in the SN and SF configurations 
-  The effect of the divertor configuration on the magnetic lobes 
-  The use of impurities as a tool to understand the plasma response 

 
•  Interaction between primary and secondary manifolds in the SF divertor 
 
•  Summary/Conclusions 

Outline: M3D-C1 simulations of the plasma response to n = 3 
magnetic perturbations applied to the NSTX-U snowflake divertor 
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Simulated NSTX-U plasmas are based on equilibrium 
kinetic profiles from a reference NSTX discharge 

•  Plasma parameters from the reference NSTX single-null (SN) discharge 
-  IP = 1.0 MA 
-  BT = -0.44 T 
-  PNBI = 6.0 MW 
-  κ = 2.1 
-  δtop = 0.37 
-  δbot = 0.71 
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NSTX-U equilibria were generated using the code ISOLVER  

•  ISOLVER calculations used P’ and FF’ from the 
reference NSTX discharge 
-  Total pressure profile assumed to be 

independent of divertor configuration 
[Soukhanovskii, Phys. Plasmas (2012)] 

NSTX-U Single-Null 

Primary x-point 
placed relatively far 
from targets to isolate 
null-point region 
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Regression in a multi-machine database provides an 
estimate for the NSTX-U H-mode SOL power fall-off length 

•  Scaling predicts a power fall-off length, λq, as low as 3 mm for the plasma 
parameters used in this work [T. Eich, Nucl. Fusion (2013)] 

λq (mm) = 1.35 . PSOL
-0.02 . Rgeo

0.04 . Bpol
-0.92 . ε0.42  ≈  3 mm 

Bpol,MP ~ 250 mT 
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Geometrical properties of the NSTX-U 
snowflake configuration  

•  Larger region of low Bp near the null-point 
-  May increase cross-field transport and 

broaden SOL 

•  Significant increase in ρnpt, which is closely 
related to the divertor volume 

-  Larger radiative losses 
-  Greater energy and momentum transfer 

to neutrals 

•  Only inner part of SOL experiences a longer 
connection length 
-  Lower electron temperature at the 

divertor target 
-  Easier access to detachment 

•  Outer part of SOL behaves as in a SN 
-  It is noteworthy that advantageous effects 

of the SF are noticeable experimentally 
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The advantageous properties of the snowflake divertor 
will be significantly enhanced in DEMO-size devices 

•  Enhancement of the SF properties over a SN depends on the width of 
the SOL with respect to the linear dimensions of the device1 

-  SOL width is not expected to increase with the device size2 

1H. Reimerdes, Plasma Phys. Control. Fusion  (2013) 
2T. Eich, Nucl. Fusion (2013) 
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•  Introduction 

•  The equilibrium properties of the NSTX-U snowflake configuration 
 
•  The M3D-C1 simulations of the NSTX-U snowflake divertor 

-  The M3D-C1 code 
-  The plasma response in the SN and SF configurations 
-  The effect of the divertor configuration on the magnetic lobes 
-  The use of impurities as a tool to understand the plasma response 

 
•  Interaction between primary and secondary manifolds in the SF divertor 
 
•  Summary/Conclusions 

Outline: M3D-C1 simulations of the plasma response to n = 3 
magnetic perturbations applied to the NSTX-U snowflake divertor 
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The plasma response to n = 3 magnetic perturbations is 
estimated using the code M3D-C1 

•  The M3D-C1 code is a two-fluid, 
resistive MHD code1 

•  The M3D-C1 computational 
domain includes the confined 
plasma,  the separatrix and the 
open field-line region 

•  Unstructured mesh allows 
increased spatial resolution near 
rational surfaces and x-point 

1N.M. Ferraro, Phys. Plasmas (2010) 
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•  The M3D-C1 code is a two-fluid, 
resistive MHD code1 

•  The M3D-C1 computational 
domain includes the confined 
plasma,  the separatrix and the 
open field-line region 

•  Unstructured mesh allows 
increased spatial resolution near 
rational surfaces and x-point 

•  Two-fluid effects governed by 
ion inertial length, di 
-  Electron and ion fluids 

decouple at finite di 

1N.M. Ferraro, Phys. Plasmas (2010) 

The plasma response to n = 3 magnetic perturbations is 
estimated using the code M3D-C1 
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•  Vacuum approach calculations 
provide almost identical results 
for SN and SF 

•  Single-fluid calculations show, for 
both SN and SF, 
-  Strong screening of resonant 

(tearing) harmonics 
-  Strong amplification of non-

resonant (kink) harmonics 

•  Two-fluid calculations show 
-  Slightly stronger amplification 

of tearing harmonics in the 
SF than in the SN 

-  Moderate edge kinks in both 
SN and SF configurations 
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The different screening mechanisms in the single- and 
two-fluid models can provide different plasma responses 

•  The vacuum approach has no screening mechanism 

•  In the single-fluid model, the screening is provided only by the E x B 
rotation 

•  In the two-fluid model, the screening is also affected by the 
diamagnetic rotation 
-  In these calculations: 
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Amplification of tearing harmonics in the two-fluid 
calculations is caused by low Ωe,perp 

•  Penetration of external perturbations into 
the plasma is determined by the electron 
perpendicular rotation Ωe,perp [Ferraro, Phys. 
Plasmas (2012)] 

•  Region of enhancement of resonant 
components coincides with region of low 
electron fluid rotation 

 
Low Ωe,perp 

Resonant Harmonics 
(Single-Null)	

Resonant Harmonics 
(Snowflake)	

Coils closer to x-point could be more efficient in suppressing ELMs 
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Lower Bp in the null-point region of the SF configuration 
leads to the formation of longer and additional lobes 

•  TRIP3D-MAFOT calculations 
predict longer and more 
magnetic lobes in the SF 
-  These effects come from 

an interplay conservation 
of magnetic flux through 
the lobes and the lower Bp 
in the null-point region 

•  The intersection of these longer 
and additional lobes with the 
divertor plates is expected to 
cause additional striations in 
the particle and heat flux target 
profiles [Frerichs, Phys Plasmas (2016)] 
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The size of the magnetic lobes seems to be more sensitive 
to resonant than to non-resonant harmonics 

•  Two-fluid calculations predict 
longer lobes than in single-fluid 
for both SN and SF 
-  Result correlates with 

amplified resonant (tearing) 
harmonics in the two-fluid 
model and screened tearing 
harmonics in the single-fluid 
model 

-  Non-resonant kink harmonics 
does not seem to affect the 
magnetic lobes size 

•  Note that a toroidal phase from 
the plasma response affects the 
location of the lobes 
-  This should cause a toroidal 

shift in the predicted particle 
and heat flux target profiles 
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•  Introduction 

•  The equilibrium properties of the NSTX-U snowflake configuration 
 
•  The M3D-C1 simulations of the NSTX-U snowflake divertor 

-  The M3D-C1 code 
-  The plasma response in the SN and SF configurations 
-  The effect of the divertor configuration on the magnetic lobes 
-  The use of impurities as a tool to understand the plasma response 

 
•  Interaction between primary and secondary manifolds in the SF divertor 
 
•  Summary/Conclusions 

Outline: M3D-C1 simulations of the plasma response to n = 3 
magnetic perturbations applied to the NSTX-U snowflake divertor 
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Impurities can be used as a tool to manipulate the 
contribution of two-fluid effects to the plasma response 

•  Two-fluid effects governed 
by ion inertial length, di 
-  Ions may decouple from 

electrons within di 

•  Ion inertial length depends 
on effective ion charge, Zeff 

 
Ø  Two-fluid effects are more 

significant in plasmas with 
low values of Zeff 
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M3D-C1 calculations predict longer lobes in plasmas 
with lower Zeff 

•  Impurities tend to 
reduce the importance 
of two-fluid effects 
-  Plasma responds as 

a single-fluid model 

•  Setting Zeff to more 
realistic values could 
decrease discrepancies 
between single- and 
two-fluid plasma 
response models 
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Impurities might be used as an actuator to probe the 
importance of two-fluid effects in the plasma response 

•  Heat flux splitting is visible only 
for νe

* > 0.5 
-  Particle flux splitting occurs 

at lower values of νe
* 

High density 
νe

* ~ 1.2 
Low density 
νe

* ~ 0.4 

n = 3 odd parity 

Weaker 
Two-fluid 

effects 

Stronger 
Two-fluid 

effects 
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•  Introduction 

•  The equilibrium properties of the NSTX-U snowflake configuration 
 
•  The M3D-C1 simulations of the NSTX-U snowflake divertor 

-  The M3D-C1 code 
-  The plasma response in the SN and SF configurations 
-  The effect of the divertor configuration on the magnetic lobes 
-  The use of impurities as a tool to understand the plasma response 

 
•  Interaction between primary and secondary manifolds in the SF divertor 
 
•  Summary/Conclusions 

Outline: M3D-C1 simulations of the plasma response to n = 3 
magnetic perturbations applied to the NSTX-U snowflake divertor 
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Effect of 3D magnetic perturbations on secondary 
manifolds is negligible 

•  Vacuum approach calculations show 
that C-coil currents have no significant 
effect on secondary manifolds 

Ø  Magnetic field lines in the private flux 
region are too far from the C-coil 

Very short lobes 
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Secondary manifolds become apparent when 
perturbation coil is placed close to secondary x-point 

•  Vacuum approach calculations show 
that only field lines passing close to the 
perturbation coil are affected 
-  Manifolds are affected by radial 

(non-tangential) perturbed field 

Ø  Primary manifolds and left hand secondary 
manifolds are too far from the perturbation coil 

Very short lobes 
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Primary and secondary manifolds are visible when both 
perturbation coils are used 

•  Calculations show that, for a sufficiently 
close perturbation coil, both primary and 
secondary manifolds can be manipulated 

Ø  Left hand secondary manifolds are 
still too far from the perturbation coil 

EMC3-Eirene transport 
simulations are in progress 
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Primary and secondary manifolds interact at sufficiently 
short distance between x-points 

•  Vacuum approach calculations show 
that primary and secondary manifolds 
may interact at 
-  sufficiently close perturbation coils 
-  sufficiently large perturbation coil 

currents  
-  small distance between x-points 

•  Interaction between manifolds may 
-  affect the edge plasma transport 
-  improve the power repartition 

between plasma legs (reduction 
of peak heat flux) 

-  increase divertor volume 

dxpt 
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•  Equilibrium properties of the NSTX-U SF have been studied 

-  SOL properties are enhanced in the inner part of the SOL 

 

•  Vacuum approach, single- and two-fluid models predict quite different 
plasma responses 

-  Differences caused by different screening mechanisms of each model 

-  ELM control coils closer to the 1st x-point might be more efficient in 
suppressing ELMs: effect is enhanced in the SF configuration 

•  Impurities can be used as a tool to manipulate the contribution of two-fluid 
effects to the plasma response 

-  Plasmas with higher Zeff have shorter lobes and more stochastic edge 

•  Interaction between primary and secondary manifolds may have a 
beneficial  impact on plasma edge transport 

Summary: No significant differences are expected between the 
plasma response from SN and SF  


