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• Compressional (CAE) and 
global (GAE) Alfvén
eigenmodes correlate with 
enhanced core 𝝌𝒆 in NSTX 

• Proposed mechanisms:
– Resonant interaction of 

modes with electron guiding 
center orbits, causing 
enhanced thermal transport

– CAEs/GAESs couple to 
Kinetic Alfvén Waves (KAWs), 
which channel energy out of 
the core 

High Frequency Alfvén Activity Linked to 
Enhanced Core Electron Thermal Transport in NSTX

[Kolesnichenko PRL 2010], [Belova PRL 2015]

[Gorelenkov NF 2010]
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• Compressional/Global Alfvén eigenmodes (CAE/GAE) 
/coherent Ion Cyclotron Emission (ICE)

– For cyclotron resonance,
𝜔 − 𝑘∥𝑣(∥ = 𝑙𝜔+, 𝑙 = ⋯ ,−1,0,1, …	

– 𝑘2𝜌( stabilizing in some ranges and destabilizing in others
• Anisotropy important 
• Perpendicular instability condition requires finite orbit 

widths:
CAEs: 1 < 𝑘2𝜌( < 2
GAEs: 2 < 𝑘2𝜌( < 4

– For CAEs, 𝜔7 ≈ 𝑘7𝑣97

– For GAEs, 𝜔7 ≈ 𝑘∥7𝑣97
• Dispersion relationships modified by finite 𝜔/𝜔+; - (important to 

existence of GAEs)

High Frequency Alfvén Eigenmodes Driven Unstable by 
Doppler-shifted Cyclotron Resonance with Fast Ions

[N.N. Gorelenkov NF 2003]
[Dendy, PoP 1994]
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• Experiment performed to test dependence of HFAEs on broad 
range of plasma and beam parameters

– Exploit beam capabilities of DIII-D to separate beam density and 
velocity dependences of modes

• CAEs observed by many diagnostics, including the Ion 
Cyclotron Emission (ICE) diagnostic

• Beam density threshold consistent with theory
• Magnetic field and plasma density threshold observed for onset 

of CAEs
• Mode frequency scales as Alfvén velocity for single mode

Experiment Designed on DIII-D to Test High 
Frequency Alfvén Eigenmode Theory
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• CAE frequency is f < fci, typically f ~1-
10MHz range in DIII-D

• Previous magnetic fluctuation 
measurements limited to < 1MHz 

• Ion Cyclotron Emission (ICE) 
diagnostic measures high speed 
toroidal magnetic fluctuations

– High bandwidth: up to 200MHz

– High speed acquisition: 200MHz, 
8GB/shot 

– Coil pairs separated by 10-15 degrees 
allowing for toroidal mode number 
measurement

• ICE digitizers allow exploitation of full 
bandwidth of other fluctuation 
diagnostics (e.g. CO2 interferometer)

New High Speed Measurement Capability Creates 
Opportunity to Test CAE/ICE Theory

RF Loop
Refurbished 2017

232-248°
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• Extend previous study of CAEs on DIII-D [Heidbrink NF 2006]
– Systematically vary beam pitch angle and injection direction
– Extensive diagnosis with most current diagnostics for

simulation validation
• Opportunity to identify GAEs on DIII-D for the first time

(future work)
• Verify parallel resonance condition, perpendicular instability 

condition, and dispersion relation
– Vary injection geometry à Pitch angle/direction
– Beam velocity scan (at constant beam density, nb)
– BT scans at constant ne à vary 𝜔+
– ne scans at constant BT à vary 𝑣9

• Establish stability threshold: vary beam density (nb) at constant 
velocity, pitch angle

– Use variable perveance à vary beam current at constant voltage

Experiment Designed to Test High Frequency
AE Theory

See NI3.6 (Wed 9:30) for more info on variable perveance
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• 8 available sources inject at 
6 different injection angles

• Co/counter injection 
• Tangential/perpendicular 

injection (left/right)
• Off-axis beam

– Source at 150 can be tilted 
down à more 
perpendicular at normal
BT, IP

• Every beam up to ~ 80keV, 
~2MW

• Beams can vary current and 
voltage independently

Flexible DIII-D Beam Geometry and Capabilities 
Give Wide Range of Directions/Pitch Angles

[Heidbrink, NF 2012]
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• Perveance Scans: cycle through each injection geometry 
once while holding BT, ne constant

– Beam current varied at constant voltage, and vice versa

– Separately control energetic ion density and velocity

– Energetic ion velocity control tests resonance condition

– Energetic ion density control tests stability threshold

• Parameter Ramps: cycle through all injection geometries 
rapidly during ramp

– Ramps reveal thresholds for activity related to
resonance condition

Beam Modulation Important Tool in Experiment
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• Magnetic fluctuation (ICE) 
diagnostic observed CAEs

• Internal diagnostics also see 
CAEs
– Doppler backscattering 

(DBS) (𝛿𝑛)

• Example: beam density 
scan at constant voltage

CAEs Observed with Magnetic and Density 
Fluctuation Diagnostics
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• Different beams excite 
at different frequencies

• At low field (1.3T), 
highest beam voltage 
(~80keV), CAEs are 
excited by 4 of the 6 
geometries

– Beam current scan at 
constant high source 
voltage

– Not all beams 
operating at full 
voltage

– Bursting due to 
sawteeth which varied 
with injection geometry

Injection Geometry Plays Important Role in Activity
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• Voltage held constant as current is 
ramped

• Mode abruptly disappears as 
beam current drops below a 
threshold 

Beam Density Threshold Observed
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Beam Density Threshold Consistent with Simulation

• Mode power drops to zero when beam current crosses 
threshold of <~47A

• Simulation predicts CAE growth rate to be positive 
above a threshold, below which CAE is stable

[Belova, PoP 2017]
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• CAEs are observed to be 
unstable at around BT ~ 
1.65T
– Corresponds to 𝑣9 =
3.5e6	m/s (using neL), 𝑣( =
2.8e6	m/s

• BT threshold expected 
because of resonance 
condition

𝜔 − 𝑘∥𝑣(∥ = 𝜔+
𝜔 = 𝑘𝑣9𝜔+
𝜔 − 1 <

𝑣(
𝑣9𝜔+

𝜔 − 1 ~1	observed	

• à Beam ions Alfvénic to hit 
velocity for resonance

BT Ramp Shows Onset of CAEs Expected from 
Resonance Condition
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• Frequency consistent with 
perpendicular instability 
condition, taking into 
account finite 𝝎/𝝎𝒄 effects: 
expect 𝝎/𝝎𝒄 > 0.5
– Use cold dispersion relation 

• During BT ramp, 𝒇 is not 
proportional to 𝒇𝒄
– Different from ICE

• However, 𝒇 ∝ 	𝒗𝑨
– Expected if all bursts have 

same k (future work)

Mode Frequency Not Proportional to Cyclotron 
Frequency During BT Ramp

0.5fci

∝vA
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• CAEs are observed to be 
unstable around neL > 2.4e13 
cm-3

– Consistent with threshold
𝜔+
𝜔 − 1 <

𝑣(
𝑣9

• Frequency not proportional 
to vA

– Density rises by a factor of 
~2, but frequency does not 
drop by √𝟐

Density Ramp Shows Onset Consistent with Parallel 
Resonance Condition
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• Onset frequency of modes 
shows a strong linear 
correlation with BT
– No correlation observed with 

density
• All onsets occur at around 

f/fc~0.57
• Future investigation needed 

to understand this

Onset Frequency Strongly Correlated with BT, No 
Correlation with ne
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For Single Mode, Frequency Scales with
Alfvén Velocity
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• As density ramps upwards, 
possibly driven by the 
beam, frequency sweeps 
down

• As density increases, vA
decreases, so frequency 
decreases

• 𝒇	 ∝ 𝒗𝑨 within each burst, but 
not during the ramp à
mode number is changing 
with each burst? (future 
work)

For Single Mode, Frequency Scales with
Alfvén Velocity
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• Toroidal mode number 
measured by pair of toroidally
separated edge coils
– Path length difference à

calibration required for
best n

• n < 0 consistent with Doppler 
shifted cyclotron resonance
– Modes propagating 

against beams

• Same trend of f, |n| seen
in NSTX [Tang TTF 2017] and 
MAST [Sharapov PoP 2014]

Preliminary Analysis Shows f Increases
as |n| Decreases
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• Observed CAEs consistent with many aspects of theory
– Frequency dependent on beam injection geometry
– Beam density threshold observed
– Observed BT & ne thresholds consistent with resonance condition
– f increases with vA as expected

• f increases as |n|decreases
– Calibration needed for exact mode number measurement

• n < 0 consistent with Doppler shifted cyclotron resonance 

Conclusions
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• Calibrate path length to coil 
pairs

• Investigate toroidal mode 
numbers
– Are there GAEs?

– Explain f during density ramp?

– Frequency scaling with mode 
numbers (compare with NSTX)

• Further investigate conditions 
for mode onset

• Further understand 
implications of finite f/fc

• Validate HYM
– TRANSP runs needed for 

beam populations

Future Work
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