

Discharge start-up and ramp-up development for NSTX-U and MAST-U

D.J. Battaglia, M.D. Boyer, S.P. Gerhardt, J.E. Menard, D. Mueller (PPPL)
G. Cunningham, A. Kirk, L. Kogan, G. McArdle, L. Pangione,
A.J. Thornton, E. Ren (CCFE)

APS DPP Conference Milwaukee, WI October 25, 2017

Summary

- Inductive start-up calculations completed for MAST-U and NSTX-U using LRDFIT
 - Achieved similar metrics for breakdown and passive stability within the unique constraints of each device
- High elongation on NSTX-U enabled by an L-H transition during the ramp-up phase
 - L-mode database assembled to identify target conditions for a reproducible L-H timing in ramp-up
 - Vertical oscillations at the time of diverting limited the elongation and hindered reproducible L-H transitions on NSTX-U
- FY18 Research milestone aims to improve control and scenario development tools for the ramp-up phase
 - Supports MAST-U / NSTX-U collaboration on start-up and ramp-up

MAST-U and NSTX-U are STs that have complementary scientific missions

- MAST-U has unique divertor configuration
 - Novel closed Super-X divertor concept to isolate divertor from main chamber
 - Use ST configuration for divertor optimization studies at high heat flux
- NSTX-U has unique heating and current drive flexibility at high field
 - Explore confinement and stability at high noninductive fraction
 - Inform aspect ratio optimization of future devices

	MAST-U (2018) Planned	NSTX-U (2016) Achieved	MAST-U (stage 1) Planned	NSTX-U (full field) Planned
Max I _p (MA)	1.5	1.0	2.0	2.0
Max B _T at 0.936 m (T)	0.513	0.635	0.684	1.0
NBI (MW)	3.5 (75 keV)	6 (90 keV)	7.5 (75 keV)	12 (90 keV)
t _{pulse} at full field (s)	1	1	5	5

Start-up and Ramp-up collaboration has been initiated between MAST-U and NSTX-U

- ST devices have common goals for optimizing startup and rampup scenarios
 - Develop robust and flexible startup scenarios
 - Maintain broad current profiles (low l_i) during ramp-up
 - Minimize ohmic flux consumption
 - Achieve reproducible timing of diverting and L-H transition
- Collaboration aims to develop similar models and metrics for optimizing startup and control
 - Accelerate progress in developing and demonstrating scenarios and control necessary for high-performance

Common elements of startup and ramp-up phases on ST devices

Precharge

- Solenoid and outer PF coils start with positive current
- Inject neutral gas, turn on pre-ionization source
- Startup (~ 20 40 ms)
 - Ramp solenoid and outer PF current toward zero
 - Achieve a field null and target V_{loop}
 - Ramp outer midplane PF coils to provide equilibrium field
 - Maintain passive R and Z stability

- Ramp-up (I_p > Induced wall current ~ 100 300 kA)
 - Transition from pre-programmed coil currents to active control of I_p, plasma shape and vertical stability
 - Transition from limited shape to diverted shape
 - Start external heating (NBI, RF)

Start-up model

Header slide

LRDFIT code used to examine start-up scenarios for NSTX-U and MAST-U

- LRDFIT is a Grad-Shafranov solver used routinely at NSTX-U for data analysis
 - An additional application is computing the vacuum field evolution for user defined or experimentally realized coil currents
 - Primary tool on NSTX-U for magnetics calibration, axisymmetric wall model development, and breakdown scenario development
- LRDFIT used to develop recipes for first plasma and startup optimization
 - Identify target scenarios with best guess for the wall model
 - Develop prescriptions for scanning parameters independently
 - I_{OH} precharge, V_{loop}, null timing, B_Z/dt, field curvature ...
 - Enabled rapid progress with NSTX-U first plasma demonstration and refinement of the 2D wall model for equilibrium reconstructions

Differences between MAST-U and NSTX-U devices that influence start-up

- Shorter solenoid of MAST-U = greater field curvature
 - Motivates including the divertor coils to oppose radial field
- NSTX-U: dB_z/dt provided primarily from a single highvoltage bipolar PF coil set
 - MAST-U: Use a number of lower voltage PF coils to generate target dB₇/dt
- Different induced currents in the conducting structures
 - Copper cooling tubes on NSTX-U generated large induced currents during initial campaign
- Differences in I, V and I²t limits on OH and PF coils

Startup scenarios use a different number of PF coils

MAST-U

 I_{OH} = 45 kA (22.5 kA/turn)
** Limit for 2018 operations

10 PF coils sets ...

Ramp toward negative current at maximum voltage (350V per coil)

P4 + DP + D6: Ramp from zero current

D5 + D7 + D3: Ramp from pos. current

PX + D1 + D2: Steady positive current to exclude solenoid B_r field

D1, D2 and D3 at 2018 current limit (5 kA)

P5: Ramp from zero current to provide equilibrium field

NSTX-U

I_{OH} = 20 kA (20 kA/turn)
** Limit for 2016 operations

2 PF coils sets ...

PF3: Provide positive nulling field, then ramp negative to establish positive field curvature (2 kV per coil w/ bipolar supplies)

PF5: Ramp from zero current to provide equilibrium field

MAST-U can produce a field null with similar spatial and temporal quality to NSTX-U

MAST-U breakdown and ramp-up metrics similar to demonstrated NSTX-U scenario

Plasma elongation in ramp-up was limited by large induced wall currents on NSTX-U

Current density (colors) and flux contours at 20 ms

Large induced current in CS crown on NSTX-U limited the early elongation

MAST-U calculations predict modest induced currents

Summary of startup calculations

- MAST-U should be able to achieve a startup scenario similar to startup demonstrated on NSTX-U
 - $-I_{OH}$ = 45 kA, I_{TF} = 2.4 MA, V_{loop} ~ 4V satisfying 2018 PF coil limits
 - Caveat: differences in pre-ionization may alter V_{loop} requirement
- Experiments and modeling will further optimize startup
 - What is the optimum dl_p/dt in the first 10 20 ms?
 - Larger values tend to keep I_i low, but drives larger wall currents which can degrade passive stability and increase flux consumption
 - What are the limits in the field curvature?
 - Extending the vertical extent of the field null with low-R PF coils typically comes at the expense of field curvature in the ramp-up
 - Aim would be to achieve maximum elongation that remains stable

Analysis of NSTX-U Ramp-up

Header slide

Early L-H transition enables low-l_i scenario on NSTX-U

- L-H transition slows current diffusion toward axis
 - Edge pressure gradient increases edge bootstrap current
 - Higher temperature increases current diffusion time
- Stable elongation increases as l_i decreases
 - Larger κ permits larger I_p and β
 - Increases bootstrap current drive
 - Plot shows impact of earlier L-H timing
 - Vertical dashed lines: L-H & H-L transitions
 - Flattop I_i decreases as L-H moves earlier

0.8 1.0

0.6

Time (s)

0.4

Increasing k in NSTX-U ramp-up will require access to low-l_i

- NSTX-U achieved a similar ramp-up shape to NSTX when I_i = 0.8
- NSTX-U operated much closer to VDE limit in this condition
 - Consistent with increase in aspect ratio
 - Note: still optimizing control and EFC on NSTX-U
- Motivates lowering I_i to expand κ range

See M.D. Boyer, 11.00041 (next poster)

NSTX-U database provides guidance on target conditions for reliable L-H transition

- Why do some discharges miss the L-H transition?
 - NSTX-U database of times that are diverted L-modes
 - 100 L-mode times and 68 L-H transition times = 168 entries
 - L-mode points: P_{NBI} ≥ 3 MW for at least 50 ms
 - Beam slowing down time ~ 25 ms
- Identified four criteria for L-H transition (next slide)
 - No discharges miss L-H transition if all four criteria are met
 - P_{NBI} ≥ 3MW can "power through" with only 3 conditions met

	Total times	L-H times	L-mode times
Satisfy all 4 criteria	39	39 (100%)	0 (0%)
Satisfy 3 criteria	57	24 (42%)	33 (58%)
Satisfy less than 3 criteria	72	5 (7%)	67 (93%)

Target conditions for a reliable L-H transition in the early ramp-up with P_{NBI} ≥ 3 MW

Criteria	Details
$n_e > 1.25 \times 10^{19} \text{ m}^{-3}$	Line-averaged density is above a critical value
V _{surf} < 1.15 V	Surface voltage (EFIT02) is below a critical value
$ dr_{sep} - 0.2 \text{ cm} < 0.6 \text{ cm}$	Shape is near double null (EFIT02) **
$O II / D_{\gamma} < 1 (t = 0.15s)$	Ratio of lower divertor filterscope channels ^^

^{**} Offset in dr_{sep} (toward USN) may indicate a systematic error in computing dr_{sep}

Criteria guide targets for early ramp-up

- Fuel early to get desired n_e target and divert near DN
- Heat with P_{NBI} ≥ 3 MW (heating efficiency ~ 50%)
- Then, pause or slow I_p ramp and fueling to get $V_{surf} < 1.15 V$

^{^^} Filterscope ratio is specific to NSTX-U. It is a general metric for the oxygen content of the plasma, which increases steadily following a boronization

Vertical oscillation ("bobble") when diverting near DN hindered shot reproducibility

Two repeat shots (Except **204588** has larger P_{NBI})

Slight differences in shape at time of diverting lead to different behavior of vertical oscillations

204118 has dither at 0.22s, then an L-H transition at 0.241s

204588 does not have an L-H transition despite larger heating

Motion away from DN shrinks plasma volume, increasing V_{surf}, hindering L-H transition from 240 – 260ms

Control and scenario solutions have been identified for mitigating the bobble

 Bobble more likely with large dZ/dt or VDE growth rates at time of diverting

- "Kick" in dZ/dt may be driven by control algorithm transitions or errors in rtEFIT
- Overshoot of target inner gap leads to larger VDE growth rate

Solutions pursued in FY16 operations

- Flux reference changes from limiter to X-point within a single control algorithm
- Inner gap feedback improves consistency of diverting time and mitigates overshoot
- Divert SN, then allow dr_{sep} feedback to alter the shape to near DN

See M.D. Boyer, 11.00041 (next poster)

-0.00 0.02 0.04 0.06 0.08 0.10

Inner gap [m]

40

FY18 Research Milestone on Startup and Ramp-up Modeling

- Extend LRDFIT calculations to include I_p in breakdown
 - Filament model and/or free-boundary GSE solution
- Develop control solutions for ramp-up using TOKSYS
 - Integrates power supply and real-time control with plasma model in order to satisfy system constraints
 - Encompass transition from feed-forward currents with a limited plasma to active position feedback with a diverted plasma
- Optimize NBI heating and current drive with TRANSP
 - Consider impact of density, outer gap, and beam parameters on MHD and fast-ion stability

Summary of Analysis of NSTX-U Ramp-up

- Expanding κ range on NSTX-U is facilitated by achieving an earlier L-H transition
 - NSTX-U achieved similar κ to NSTX with I_i ~ 0.8, but ran closer to VDE stability limit
- A database of diverted L-mode times identified four criteria that improves the reliability of an L-H transition
 - Provides guidance on early ramp-up scenario, such as adding a "pause" to the $I_{\text{\tiny p}}$ ramp and fueling
- Vertical oscillations at the time of diverting near DN ("the bobble") reduced the repeatability of the L-H transition
 - Simulation framework is under development to advance the control and scenario solutions for the ramp-up phase

