

NSTX-U is sponsored by the U.S. Department of Energy Office of Science Fusion Energy Sciences

Power exhaust scenarios & control for projected high-power NSTX-U operation

J.E. Menard, S.P. Gerhardt, C.E. Myers, A. Brooks, M. Mardenfeld (PPPL) M.L. Reinke (ORNL) NSTX-U Research and Engineering teams

59th Annual Meeting of the APS Division of Plasma Physics Milwaukee, WI October 23 – 27, 2017

Abstract / Motivation

- An important goal of the NSTX Upgrade (NSTX-U) research program is to characterize energy confinement in the low-aspect-ratio spherical tokamak configuration over a significantly expanded range of plasma current, toroidal field, and heating power, while increasing flattop durations to ~5 seconds.
- However, the narrowing of the scrape-off layer at higher current combined with an improved understanding of expected halo-current loads has motivated a significant re-design of NSTX-U plasma facing components in the high-heat-flux regions of the divertor.
- In order to reduce the expected divertor heat flux to acceptable levels, a combination of mitigation techniques will be used: increased divertor poloidal flux expansion and divertor radiation, and controlled strike-point sweeping.
- The machine requirements for these various mitigation techniques are studied here using a newly implemented reduced heat-flux model.
- Systematic equilibrium scans are used to quantify the required divertor coil currents and to verify vertical stability for a range of plasma shapes.
- Free-boundary control schemes to constrain the strike-point location and field-line angle-of-incidence are also described.

NSTX facility upgraded to access new physics using 2 major new tools:

1. New Central Magnet

2. Tangential 2nd Neutral Beam

<u>Higher T, low v^* from low to high β </u> \rightarrow Unique regime, study new transport and stability physics $\begin{array}{l} \hline Full \ non-inductive \ current \ drive \\ \hline \rightarrow \ Not \ demonstrated \ in \ ST \ at \ high-\beta_T \\ \hline Essential \ for \ any \ future \ steady-state \ ST \end{array}$

NSTX-U integrated performance goals

2. Tangential 2nd Neutral Beam

>2× toroidal field (0.5 → 1T)
>2× plasma current (1 → 2MA)
>5× longer pulse (1 → 5s)

 >2× heating power (5 → 10MW)
 >4× divertor heat flux (→ ITER levels)
 >Up to 10× higher nTτ_E (~MJ plasmas) and energy injected into vessel

NSTX-U

NSTX confinement increased at higher T_e

Will confinement trend continue, or look like conventional A?

Rationale for 1T, 2MA, 10MW requirement

• 2× increase in plasma current I_P and toroidal field B_T sufficient to differentiate between conventional (ITER 98y,2) and Iow-A (ST) H-mode confinement time τ at higher plasma temperature and/or density:

$$\tau_{98y,2} \propto I_{\rm P}^{0.93} B_{\rm T}^{0.15} \bar{n}_{\rm e}^{0.41} P_{\rm Loss}^{-0.69} R_0^{1.97} \varepsilon^{0.58} \kappa^{0.78}$$

$$\tau_{\rm ST} \propto I_{\rm P}^{0.57} B_{\rm T}^{1.08} \bar{n}_{\rm e}^{0.44} P_{\rm Loss}^{-0.73}$$

• 2× heating power *P* needed to access high enough stored energy to access wide range of β at 2× higher field and current: $\beta_N \leq \sim 4.5-5.5$, $\beta_T \leq \sim 15-20\%$

NSTX-U magnet pulse duration requirement arises from goal of achieving current profile equilibration

- Current redistribution time $\tau_{CR} \propto T_e^{3/2} \rightarrow$ longest for highest confinement, lowest density
- Physics ranges of interest:
 - -Normalized confinement: $H_{98y2} = 1-1.5$, $H_{ST} \le 1$
 - Normalized density f_{GW} = 0.5-1 lower range for low ν^{\star}
- Longest $\tau_{CR} \sim 1.8s$ for $H_{98y2} = 1.4-1.5$, $f_{GW} = 0.5-0.6$
 - This $H_{\rm 98y2}$ and $f_{\rm GW}$ combo accessed only transiently on NSTX
 - Significant physics R&D needed to access such plasmas
- Access then measure stationary profiles $\rightarrow \Delta t_{flat} \sim 3\tau_{CR}$

• $3\tau_{CR} \sim 5-5.5s \rightarrow$ motivates goal of 5s I_P flat-top

INSTX-U

Boundary shaping flexibility drives PF coil and structural requirements for plasma operation

NSTX-U

APS-DPP 2017 (J. Menard)

96 scenarios primarily higher-κ, lower- I_i high-performance H-modes ($\beta_N \sim 5$)

2MA, 1T: 32 shapes / 96 scenarios

 Higher I_i ~1-1.5 L-modes not included in design requirements → L-mode I_P < 2MA, Δt_{flat} < 5s

Operating κ depends on range of stable internal inductance (& impacts power-exhaust solution)

- $\kappa = 2.5$
- Risk: No NSTX-U transport data yet at high B_T , I_P , κ
 - This confinement physics data is a key motivation for the Upgrade in the first place!

Reduced heat flux model

Parametric fits to divertor heat flux

• T. Eich, et al., Nucl. Fusion 53 (2013) 093031, Eqn 1

$$q(\bar{s}) = \frac{q_0}{2} \cdot \exp\left(\left(\frac{S}{2\lambda_q}\right)^2 - \frac{\bar{s}}{\lambda_q \cdot f_x}\right) \cdot \operatorname{erf} c\left(\frac{S}{2\lambda_q} - \frac{\bar{s}}{S \cdot f_x}\right) + q_{\mathrm{BG}}$$

$$\bar{s} = s - s_0 = (R_{\mathrm{sep}} - R) \cdot f_x$$

Figure 1. Typical outer target power parallel heat flux for each machine and result of fitting equation (1).

APS-DPP 2017 (J. Menard)

Model for SOL heat flux width λ_q

• T. Eich, et al., Phys. Rev. Lett. **107** (2011) 215001 – Equations 5, 7-10 \rightarrow Goldston heuristic drift model for λ_q

Map
$$\lambda_m$$
 to outer midplane: $\lambda_m^* = \frac{R_{\text{geo}}}{(R_{\text{geo}} + a)} \frac{B_p}{B_p^{mp}} \lambda_m$ $B_p = \frac{\mu_0 I_p}{2\pi a \sqrt{(1 + \kappa^2)/2}}$
 $\lambda_m = 2.02 \frac{f_{\text{AZ}}}{\sqrt{(1 + \kappa^2)} \epsilon^{1/8}} B_T^{-7/8} q_{\text{cyl}}^{9/8} P_{\text{SOL}}^{1/8}$ $q_{\text{cyl}} = \frac{2\pi a \epsilon B_T}{\mu_0 I_p} \frac{(1 + \kappa^2)}{2}$
with λ_m in [mm], P_{SOL} in [MW], B_T in [T]

$$f_{AZ} = \left(\frac{2A}{1+\bar{Z}}\right)^{7/16} \left(\frac{Z_{eff}+4}{5}\right)^{1/8} \qquad \bar{Z} = \sum_{i} Z_{i} n_{i} / \sum_{i} n_{i} \qquad \bar{A} = \sum_{i} n_{i} A_{i} / \sum_{i} n_{i}$$

Use $\lambda_{q} = \lambda_{m}^{*}$

Data for private flux region width w_{pvt}=S

• T. Eich, et al., Nucl. Fusion

53 (2013) 093031

- M. Makowski et al., Phys. Plasma **19**, 056122 (2012)
 - $R^2 = 0.603$ C-Mod DIII-D NSTX A A MAST C-Mod AUG Div I w_{pvt} (mm) AUG DivIlb S [mm] D3D 3.01 ± 0.62 JET Exponent -1.31 ± 0.15 -0.29 ± 0.06 -0.33 ± 0.10 1.03 ± 0.29 ŤG 0 2 0 3 0 8 10 6 2 4 λ_{fit} (mm) ۸_a [mm]

Table 5. Variation of mean power spreading factor, *S* and S/λ_q for the various devices.

	JET	DIII-D	AUG DivI	AUG DivII	C-Mod	MAST	NSTX
$\frac{S \text{ (mm)}}{S / \lambda_q}$	0.59–1.04	0.39–2.27	0.35–0.56	0.79–2.02	0.86–1.46	1.11–4.95	0.46–4.35
	0.26–0.81	0.24–1.14	0.26–0.28	0.40–0.94	0.67–2.32	0.17–0.95	0.15–0.95

Generalized divertor heat-flux model consistent with Eich parametric fitting

- SOL heat flux approximately field-aligned $\Rightarrow \vec{q} \approx \vec{q}_{||} = q_{||}\hat{b} = q_{||}\vec{B}/B$
- No SOL heat source $\Rightarrow \nabla \cdot \vec{q} = \vec{B} \cdot \nabla(q_{||}/B) = 0 \Rightarrow q_{||} = f(\psi)B$
- $q_{\parallel} \equiv q_{\parallel 0} (B/B_0) \hat{q}(\hat{\psi})$ $\hat{q}(\hat{\psi}) \equiv 0.5 \exp(\sigma_0^2 \sigma) \operatorname{erfc}(\sigma_0 \sigma/2\sigma_0)$
- $\sigma_0 \equiv S/2\lambda_q$ $\sigma \equiv \hat{s}/\hat{\lambda}_q$ $\hat{s} \equiv \hat{\psi} 1$ $\hat{\psi} \equiv (\psi \psi_{axis})/\Delta\psi$
- $\hat{\lambda}_q \equiv \lambda_q |\nabla \psi|_{omp} / \Delta \psi$ $\Delta \psi \equiv (\psi_{edge} \psi_{axis})$
- Note: $q_{\parallel 0} \approx P_{div} B_0 / (2\pi |\nabla \psi|_{omp} \lambda_q)$ for $\sigma_0 \to 0$
- Divertor surface normal unit vector $\equiv \hat{n} \Rightarrow q_{divertor} = (\hat{n} \cdot \hat{b})q_{||0}(B/B_0)\hat{q}(\hat{\psi})$
- Define total B-field angle of incidence $\theta_B \Rightarrow \hat{n} \cdot \hat{b} = \sin(\theta_B)$
- For $q_{divertor} = \text{Eich } q(\bar{s}) = q_0 \hat{q}(\bar{s}) \Rightarrow q_0 = \sin(\theta_B) q_{||0}(B/B_0)$

$$q_{divertor} = q_{||0}\hat{q}(\hat{\psi})(B/B_0)\sin(\theta_B)$$

NSTX-U

Choice of S for NSTX-U calculations

- Options:
 - $-S_{Mak} = S$ from Makowski scaling
 - $-S_{rel} = MIN(S / \lambda_q) \times \lambda_q = 0.15 \times \lambda_q$
 - MIN(S / λ_q) = 0.15, 0.17 for NSTX, MAST
 - $-S_{fix} = fixed / constant value of S$
- NSTX-U model uses combination of all these options as follows:
 - First set S = MIN($[S_{Mak}, S_{rel}]$)
 - Then enforce $S_{\text{min}} \leq S \leq S_{\text{max}}$
 - S_{min} = 0.1mm, S_{max} = 0.5mm
 - S typically set by S = $S_{rel} \approx 0.2$ -0.3mm
 - $-\,S=0.15\,\times\,\lambda_q\approx S_{mak}(f_G=0.4,\,2MA,\,1T)$
 - → Consistent w/ physics/ops goal $f_G \ge 0.5$

Model for power conducted to divertor target

- P_{heat} = total heating power (ohmic + auxiliary + alpha)
- f_{rad} = fraction of heating power radiated from core - For NSTX-U projections assume f_{rad} = 0.3
- $P_{rad} = f_{rad} \times P_{heat} = power radiated from core$
- $P_{sol} = P_{heat} \times (1-f_{rad}) = power into SOL$
- $N_{div} = Number of in/out divertor legs connected to target$ $- <math>N_{div} = 1$ for single null (SN), $N_{div} = 2$ for double null (DN)
- f_{obl} = fraction of power to outboard divertor leg(s) - For NSTX-U projections assume f_{obl} = 0.8 for DN, 0.65 for SN
- $f_{ibl} = (1-f_{obl}) = fraction of power to inboard divertor leg$
- $f_{leg} = f_{obl}$ or $f_{ibl} =$ fraction of power to chosen divertor leg

 $P_{div} = P_{sol} f_{leg} / N_{div} = power conducted to divertor target$

NSTX example: low δ , $I_P = 0.8MA$

NSTX-U

APS-DPP 2017 (J. Menard)

NSTX example: high δ , $I_P = 1.2MA$

NSTX-U

APS-DPP 2017 (J. Menard)

Strategies for Mitigating Heat Fluxes

- Increase poloidal flux expansion
 - changes the amount of wetted area on divertor, but also makes for shallow angles
- Strikepoint sweeping in time

 use PF coils to move the strike point back and forth across the surface
- Increase radiation fraction (30% assumed in models)
 - <u>contingency</u> due to uncertainty of compatibility w/ physics goals
 - adding new divertor fueling locations to help us exploit radiative exhaust

Energy Conf. Time

Div. Temperature, Heat Flux

how we move on this plot is a research focus of the fusion program worldwide

Comments on comparison to NSTX and extrapolation to NSTX-U

- Have looked at very limited number of NSTX cases
 - $-f_{rad} = 0.2-0.3$ and S = S_{Mak} *might* be reasonable scaling assumption for NSTX / NSTX-U
 - Peak heat fluxes can match, but exact profile shapes differ
 - There is substantial uncertainty in both f_{rad} and S_{Mak}
 - Need DIVSOL TSG to identify more cases for comparison
 - More detailed analysis of NSTX S-scaling would be valuable
- For scaling to NSTX-U, use more conservative (i.e. smaller) S = S_{rel} = 0.15 × λ_q
- Detachment is option for reducing NSTX-U heat-flux
 - Showed reduction of q_{\perp} by ~50-70% in NSTX
 - Prefer not to rely on detachment for NSTX-U scenarios
 - Beneficial to have more operating margin if PFCs will allow

NSTX-U projection example: high δ , I_P = 2MA with high flux expansion divertor

• A = 1.75, κ = 2.74,	balanced DN
-----------------------	-------------

- $I_P = 2MA, B_T = 1T, P_{heat} = 10MW$
- $\lambda_{q-mid} = 1.97mm$, $S/\lambda_q = 0.15$
- Poloidal flux expansion = 36
 - Also assume B-field angle of incidence θ_B must be $\geq 1^\circ$ (tile alignment / leading edge tolerance)
- Radiation fraction = 30%
- 80% of power to outboard
- 50-50 split between upper/lower
- P_{div} ~ 2.8MW to divertor target

•
$$q_{div-peak} = 7.8 \text{ MW/m}^2$$

Example case from 96 with high I_{PF1A}

• A=1.84, κ =2.5, $\delta_{U, L}$ = 0.193, 0.375, I_{OH} =0, $I_{PF1AU, L}$ = 15, 7kA

NSTX-U

APS-DPP 2017 (J. Menard)

Example: Scan 1: No PF1B, use PF1C for high flux expansion IBDH tile heat flux projections

NSTX-U

Elongation Impacts Use of Poloidal Flux Expansion

- Low-κ shapes have x-point far from PFCs have useful scientific value
 - $-I_p = 1$ MA, $P_{NBI} = 3$ MW L-mode
 - flux expansion < 3, field line angles > 10 deg
 - high stationary heat flux (> 6 MW/m²)
- Increasing kappa and moving x-point closer to targets can mean higher I_p, P_{NBI} are 'easier' $- I_P=1.00 \text{ MA}, B_T=0.75 \text{ T}, 7.5 \text{ MW}: q_{peak} \sim 12 \text{ MW/m}^2$ $- I_P=1.25 \text{ MA}, B_T=0.75 \text{ T}, 8.0 \text{ MW}: q_{peak} \sim 7 \text{ MW/m}^2$
- Shape/heat flux coupling stronger in STs

Initial Modeling of Sweeping Shows Benefits (Implemented in reduced model by M. Reinke, ORNL)

NSTX-U

APS-DPP 2017 (J. Menard)

HHF Tile Designs Converged to 'Small Cubes'

ANSYS simulation of 10 MW/m² for 5 sec onto isotropic graphite at normal incidence

- · larger tiles 'bow', enhancing stress, small cubes relieve this by 'mushrooming'
- design criteria using T_{limit} ~ 1600 °C, and allowable stresses of 50% material limit
- scoping simulation show T_{max} = 2100 °C, max compressive stress of 55.8 MPa (86% of allowable) and max tensile stress of15.4 MPa (51% of allowable)
 - example of design that is 'temperature limited' and not 'stress limited'

Developing Designs Using Castellated Tiles

example vertical divertor

- Designs working to avoid front-surface holes in HHF regions
- Side-access
 through removing
 low-heat flux tiles
 w/ front surface
 holes
- Ex: cam-like action secures tiles against mounting plate/vessel
- Beginning designs for inter/intra-tile diagnostics

NSTX-U

Empirically Motivated Divertor Power Sharing (Implemented in reduced model by M. Reinke, ORNL)

- NSTX only measured the outer, lower divertor heat flux
 - model uses inner/outer split of 70/30 LSN and 55/45 USN, smooth transition in-between

C-Mod H-mode; Brunner APS 2016 power flux H-mode, 0.8 MA, 2.5e+20 m⁻³, FWD-B per Poorr H-mode

NSTX-U

APS-DPP 2017 (J. Menard)

Tile Shaping Used to Avoid Leading Edges

Method for simultaneously controlling strike-point position and angle of incidence

- $q_{divertor} = q_{\parallel 0} \hat{q}(\hat{\psi}) (B/B_0) \sin(\theta_B)$
- $q_{divertor} = q_{\parallel 0}\hat{q}(\hat{\psi})(B/B_0)(\hat{n}\cdot\hat{b})$
- $q_{divertor} = q_{\parallel 0} \hat{q}(\hat{\psi}) (B_{\phi}/B_0) \tan(\alpha_{heat})$
- $\tan(\alpha_{heat}) \equiv B_n / B_\phi$ $B_n \equiv \vec{B}_P \cdot \hat{n}$
- Can also show that: $B_n = R^{-1} \partial \psi / \partial \tau$

•
$$\Rightarrow \partial \psi / \partial \tau = RB_{\phi} \tan(\alpha_{heat}) = \text{constant}$$

- \Rightarrow constrain flux gradient at strike-point
- also constrain poloidal flux at strike-point

Implemented in PPPL IDL-ISOLVER: Works well with all 3 divertor PF1 coils

Summary

- NSTX-U redesign of high-heat-flux PFCs motivated by projected narrowing of SOL at high I_P and improved understanding of expected halo-current loads
- Systematic equilibrium scans used to quantify the required divertor coil currents and to verify vertical stability for a range of plasma shapes
- Tile designs developed to handle high heat fluxes
- Free-boundary control schemes developed to constrain the strike-point location and field-line angleof-incidence → supports use of fish-scaled tiles
- Can support core confinement studies at the highest current, power, duration projected for NSTX-U