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MOTIVATION: Investigate turbulent microinstabilities in NSTX and CMOD H-mode plasmas
exhibiting unusual plasma transport
- Remarkably good ion confinement and Resilient Te profiles on NSTX
- ITB formation on CMOD

- Identify underlying key plasma parameters
for control of plasma performance - N{\/§7CX__
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METHOD- GS2 and GYRO flux tube simulations

- Complete electron dynamics. 3 radii, 4 species.
- Linear electromagnetic; nonlinear, electrostatic calculations (CMOD)
Gyrokinetic Model Equations

Perturbed electrostatic potential:
®(.0.2.1) = expling ~ ing(r)0)] E $(6 — 27p,r, 1) expling(r)2p)]

Linearized gyrokinetic equation, ballooning representatlon ‘s-a” MHD equilibrium:
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Kotschenreuther, et al Comp. Phys. Comm. 88 128 (1995)



NSTX H-mode:

Electron Temperature Profile Resiliency

During H-mode
Te(r) remains resilient
electron density increases
ion temperature decreases

What clamps
Electron temperature profile?
Examine microinstability

Growth rates at 3 zones

q profile: partial kinetic EFIT
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NSTX: Examine Microinstability Growth
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What is the Instability at 0.65r/a on NSTX?
What Effect Does It Have on Transport?

Character of fastest growing mode changes to ITG/TEM.
This is an ETG-type microtearing mode, driven by (gradTe)/Te.
If a(gradNs)/Ns and a(gradTi)/Ti=0, mode ~unchanged.
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Summary: NSTX H-mode Gyrokinetic Results

Good ion transport appears due to stabilized ITG
Poor electron transport and resilient Te profiles as yet unexplained

r/a Xi Xe ITG ETG
< Xneo stable stable
025  t=0.4s >> Ai
t=0.6s Likely ExB stable
stabilized
< Yneo ExB stabilized Likely ExB
t=0.4s >> A stabilized
0.65 '
t=0.6s ExB stabilized stable
< Xneo ExB stabilized unstable
t=0.4s >> A
080 t=0.6s Likely ExB unstable
' stabilized




CMOQOD Internal Transport Barrier

TRIGGER time: Examine Microinstability Growth
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NONLINEAR GS2 Simulations reproduce linear result

ITB TRIGGER: Before n, peaks, region of reduced transport and
stable ITG microturbulence is established without ExB shear
Quiescent, microturbulence in ITB region
Moderate microturbulence in plasma core
High microturbulence level outside half-radius
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SUMMARY:

Linear calculations of drift wave instabilities in the ion temperature gradient and
electron temperature gradient range of frequencies

Roughly consistent with improved ion confinement in NSTX and
improved confinement within and at ITB in CMOD H-mode plasmas

Remarkably good ion transport in NSTX H-mode (Gates, PoP 2002) would be
expected from stable ITG throughout plasma

Profile effects (GYRO) may fully stabilize ITG everywhere.
Electron transport => g monotonic so unstable ETG at all r...MSE?

Resilient temperature profiles on NSTX may be maintained through ETG instabilities,
Nonlinear calculations needed. Tearing parity microturbulence found - in
contrast to tokamaks - effects on transport to be determined.

Internal transport Barrier on CMOD appears after off-axis RF heating, where
microstabilities quiescent. Nonlinear calculations in ~agreement with linear.

Sawtooth propagation measurements confirm low transport in the region at the
trigger time (Wukitch, PoP, 2002).



GS2 Evolution of Linear Growth Rates for k p,=0.1t0 0.8

Some stable, some unstable
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NSTX r/a=0.8: ITG Range of Frequencies

Outside Core, ITG Range of Frequencies
Growth Rates and Eigenfunction at Most Unstable Wavelength
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NSTX r/a=0.65: ITG Range of Frequencies

Growth Rates and Eigenfunction of Most Unstable Mode
- Tearing Parity
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S2 criterion H-mode plasmas:

*GS2: Linear, fully electromagnetic, 4 species
Criteria: p/L<<1 for GS2,

but profile effects can mix different wavelengths
=> p* stabilization (GYRO)

‘NSTX zone, rho-star, # ion gyroradii across plasma
0.25r/a  p*=0.0185/0.6= 0.031 32

0.65r/a 0.014 71

0.80r/a 0.0064 157
CMOD

0.25r/a 0.008 122

0.45r/a 0.008 122

0.65r/a 0.006 167



Very Preliminary Results from GYRO Code
for CMOD: ITG Range of Frequencies

GYRO: (R. Waltz, J. Candy, General Atomics)
Large software project for solution of gyrokinetic Maxwell egns
Simultaneous solution of electromagnetic physics
(with kinetic electrons)
and global radial profile variations

Few initial runs with GYRO in fluxtube, circular mode only:
three radii at trigger time as for GS2 studies

Core: damped ITG mode
Outside ITB region: converged ITG mode
In ITB region: In progress
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NSTX: Critical Gradient

Below or At Marginal Stability for ITG

Experimental Temperature Gradient for ITG-TEM
Drift Modes far below Marginal Stability
when ExB Shearing Rate Subtracted
Hybrid root changes from ITG to TEM character
below experimental a(grad Ti)/Ti.

Fastest Growing ITG Drift Mode Wavelengths
Change little as grad Ti/Ti is reduced
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NSTX: Far Above Critical Gradient for ETG Modes
ExB Shearing Rate<<Maximum Growth Rate
Fastest Growing ETG Drift Mode Wavelengths

and Growth Rates Decrease as gradTe/Te is Reduced
Higher Critical Gradient for ETG than ITG
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ITB Trigger Time:
Linear, Electromagnetic Gyrokinetic Calculations with GS2:
Drift wave Microturbulence at k, p; = 0.1 to 80.
Low k,p;: ITG => y2nomalous gutside ITB
TEM and ITG: already stabilized at and within ITB
High k, p;:  ETG driven by strong VT, => y 2a°malous gt and outside ITB

Growth rates at zones 5,9,13

Real frequenCies (~1 0**6lseC) for kperp rho-i from 0.1 to 80
zones 5,9,13 ITG stabilized in plasma core and near ITB
kperp rho-i from 0.1 through 80 eta-i small, TE drive weak; ITG and TEM stable
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