A Model Of Pedestal Structure

J.D. Callen, University of Wisconsin, Madison, WI 53706-1609 C-Mod/NSTX Pedestal Workshop, PPPL, Princeton, NJ, September 7–8, 2010

Theses:

1) A comprehensive model for the pedestal structure can be developed assuming paleoclassical plasma transport dominates throughout the pedestal.

2) Predictions are developed¹ for $dT_e/d\rho$, $n_e(\rho)$, density fueling effects, initial transport-limited height of β_e^{ped} $e^{ped}, \,\, dT_i/d\rho, \,\, \Omega_t(\rho), \,\, \hbox{charge-exchange}$ effects on $\Omega_t(\rho)$ and resultant radial electric field $E_\rho(\rho)$ in the pedestal.

3) All the predictions agree (within \sim 2) with DIII-D 98889 pedestal data.²

4) Model provides interpretation of key transport properties that underlie QH-modes, EDA H-modes, I-modes and transport responses to RMPs.

5) Validation tests are suggested:¹ 4 fundamental, 4 secondary, 4 scenarios.

¹J.D. Callen, "A Model of Pedestal Transport," report UW-CPTC 10-6, August 30, 2010, available via http://www.cptc.wisc.edu.

²J.D. Callen, R.J. Groebner, T.H. Osborne, J.M. Canik, L.W. Owen, A.Y. Pankin, T. Rafiq, T.D. Rognlien and W.M. Stacey, "Analysis of pedestal transport," Nuclear Fusion 50, 064004 (2010).

Motivation: What Are Key Transport Issues For Pedestals?

• How does the huge electron heat flux from core get carried through the low n_e , T_e pedestal? Answer: by making $|dT_e/d\rho|$ very large $\Longrightarrow T_e$ pedestal.

Conductive electron heat flow (Watts) through a flux surface (S) is $P_e \simeq n_e \chi_e S$ $\sqrt{ }$ − $\left(\frac{dT_{e}}{d\rho}\right)$. The needed T_e gradient in the pedestal is thus 1 $\bm{L_{Te}}$ ≡ − 1 $\bm{T_e}$ $d T_e$ dρ = $\boldsymbol{P_e}$ $n_eT_e\chi_eS$. $P_e \sim$ $n_eT_e\,V$ τ_E $\&\ \tau_E \sim$ $\bm{a^2}$ $\overline{\chi}_e$ yields a $\bm{L_{Te}}$ ∼ n_eT_e $n_e^{\rm ped}T_e^{\rm ped}$ \dot{e} $\gg 10$ if $\overline{\chi}_e \sim \chi_e^{\rm ped}$ $_e^{\rm ped}.$

Paleoclassical $\chi^{\rm pc}_{e}$ $_{e}^{\mathrm{pc}}$ agreed with interpretive χ_{e} in 98889 pedestal² and χ_{e}^{pc} $_e^{\rm pc}({\rm ped})\thicksim\overline{\chi}_e.$

• How does the density build up so high with modest core fueling and mostly edge fueling (up steep pedestal density gradient!)? Answer: density pinch.

It has long been known that density pinches are important in H-mode pedestals.³ Interpretive Stacey-Groebner analysis 4 indicates inward pinch nearly cancels diffusion. Paleoclassical model predicted density pinch and inferred diffusivity in 98889 pedestal.²

CONCLUSION: A complete pedestal structure model based on paleoclassical transport should be developed — for $n_e(\rho)$, $T_e(\rho)$, $\Omega_t(\rho)$ and $E_\rho(\rho)$.

³M.E. Rensink, S.L. Allen, A.H. Futch, D.N. Hill, G.D. Porter and M.A. Mahdavi, "Particle transport studies for single-null divertor discharges in DIII-D," Phys. Fluids B 5, 2165 (1993).

⁴W.M. Stacey and R.J. Groebner, "Interpretation of particle pinches and diffusion coefficients in the edge pedestal of DIII-D H-mode plasmas," Phys. Plasmas 16, 102504 (2009).

Outline

- Key profile properties of DIII-D 98889 pedestal²
- Paleoclassical transport model
- Pedestal plasma transport equations

• Pedestal structure:

electron density profile electron temperature profile ion temperature profile toroidal flow profile and radial electric field

• Discussion:

sources of $error - in$ key data and paleoclassical theory pedestal profile evolution into ELMs interpretations of QH-modes, EDA H-modes and I-modes interpretation of transport effects of RMPs

• Experimental validation tests

• Summary

98889 Pedestals: Transport Quasi-equilibrium Will Be Studied

- LSN DIII-D 98889 discharge has:²
	- $P_{\text{NBI}} \simeq 2.91 \text{ MW},$ $P_{\text{OH}} \simeq 0.3 \text{ MW}$, $B_{\rm t0} \simeq 2$ T, $I \simeq 1.2$ MA, $q_{95} \simeq 4.4,$ $a \simeq 0.77$ m, mid-plane half-radius $r_M \simeq 0.6$ m, $\mathrm{low}\,\,n_{e}^{\mathrm{ped}}$ $_{e}^{\rm ped}, \ {\rm high} \ T_{e}^{\rm ped}$ $_e^{\rm pred}.$
- Transport question to be addressed is:

Can initial (~ 10 ms), transport-limited, quasi-equilibrium pedestal structure be predicted?

Figure 1: T_e and n_e profiles recover quickly (\sim 10 ms) after ELM, then evolve slowly (\sim 25 ms) to next ELM. Quasi-equilibrium profiles are obtained by binning 80-99 % data of ELM cycles, averaging over $4-5$ s.²

Pedestal: Low Density LSN DIII-D 98889 Pedestal Is Studied²

- Experimental data is fit to tanh (n_e, T_e) & spline (T_i) profiles.
- Radial coordinate used is $\rho\equiv\sqrt{\Phi/\pi B_{\rm t0}}\,\,\mathrm{with}\,\,\rho_N\equiv\rho/a.$
- Defined pedestal regions are: I: core, $0.85 < \rho_N < 0.96$, pedestal "top" is at $\rho_t \simeq 0.96a$, II: top half, $0.96 < \rho_N < 0.98$, density mid-point is at $\rho_n \simeq 0.982a$, III: bottom half, $0.98 < \rho_N < 1.0$.
- Key pedestal profile features: n_e "aligned" with T_e profile, $dT_e/d\rho \simeq$ constant in pedestal, "top" of T_e pedestal hard to identify, $|dT_i/d\rho|$ is smallest gradient.

Figure 2: Edge profiles for n_e , T_e , and T_i are obtained by averaging Thomson and CER data over 80–99 $\%$ of average 33.53 ms between ELMs.² Lines show tanh & spline fits; red dots are fit symmetry points.

Paleoclassical Effects Occur In All Transport Channels

• Density of a species s (electrons and all ions — intrinsically ambipolar):⁵

$$
\Gamma_{\rm{spc}}\equiv-\frac{1}{V'}\frac{\partial}{\partial\rho}\left(V'\bar{D}_{\eta}n_{s0}\right)=-\left.\bar{D}_{\eta}\frac{\partial n_{s0}}{\partial\rho}+n_{s0}V_{\rm{pc}},\quad\right|V_{\rm{pc}}\equiv-\frac{1}{V'}\frac{\partial}{\partial\rho}\left(V'\bar{D}_{\eta}\right)\sim-\frac{3\,\bar{D}_{\eta}}{2\,L_{Te}}\,.
$$

• Electron heat transport has a different transport operator:⁵

$$
\langle \vec{\nabla} \cdot \vec{Q}_e^{\rm pc} \rangle = -\frac{M+1}{V'} \frac{\partial^2}{\partial \rho^2} \bigg(V' \bar{D}_\eta \frac{3}{2} n_e T_e \bigg), \quad {\rm with} \quad M \simeq \frac{\lambda_e}{\pi R_0 q} \sim 0 \!-\! 5 \; {\rm in \; pedestal \; region}.
$$

 \bullet Ion heat transport is similar⁶ to density transport:

$$
\Upsilon_{\rm{spc}}\equiv-\frac{1}{V'}\frac{\partial}{\partial\rho}\left(V'\bar D_\eta\frac{3}{2}n_{i0}T_{i0}\right)=-\bar D_\eta\frac{\partial}{\partial\rho}\left(\frac{3}{2}n_{i0}T_{i0}\right)\,+\,\frac{3}{2}n_{i0}T_{i0}V_{\rm{pc}}.
$$

- Toroidal momentum radial transport is similar⁵ to density and ion heat transport $(L_t \equiv m_i n_{i0} \langle R^2 \Omega_t \rangle, \text{FSA}$ plasma toroidal angular momentum density): $\Pi_{\rho\zeta}\equiv -$ 1 V' ∂ $\partial \rho$ $(V'\bar D_\eta L_t)=-\bar D_\eta\frac{\partial L_t}{\partial \eta}$ $\partial \rho$ $+ L_tV_{\text{pc}}$.
- Pinch effects from V_{pc} are due to structure of paleo transport operators.

⁵J.D. Callen, A.J. Cole, and C.C. Hegna, "Toroidal flow and radial particle flux in tokamak plasmas," Phys. Plasmas 16, 082504 (2009).

⁶J.D. Callen, C.C. Hegna, and A.J. Cole, "Transport equations in tokamak plasmas," Phys. Plasmas 17, 056113 (2010).

Key Paleoclassical Parameter Is Magnetic Field Diffusivity D_n

• Magnetic field diffusivity is induced by parallel neoclassical resistivity $\eta_{\parallel}^{\text{nc}}$ $\mathop{\text{nc}}\limits_{\parallel}$:

$$
D_\eta \equiv \frac{\eta_\|^{\rm nc}}{\mu_0} = \frac{\eta_0}{\mu_0} \frac{\eta_\|^{\rm nc}}{\eta_0}, \quad \text{in which reference diffusivity is} \quad \boxed{\frac{\eta_0}{\mu_0} \equiv \frac{m_e \nu_e}{\mu_0 n_e e^2} \, \simeq \, \frac{1400 \, Z_{\rm eff}}{[T_e ({\rm eV})]^{3/2}} \frac{\ln \Lambda}{17}}.
$$

• Ratio of neoclassical to reference (\perp) resistivity is approximately (for 98889)

$$
\boxed{\frac{\eta^{\text{nc}}_{\parallel}}{\eta_0}\simeq\frac{\eta^{\text{Sp}}_{\parallel}}{\eta_0}+\frac{\mu_e}{\nu_e}}, \quad \text{with} \quad \frac{\eta^{\text{Sp}}_{\parallel}}{\eta_0}\simeq\frac{\sqrt{2}+Z_{\text{eff}}}{\sqrt{2}+13Z_{\text{eff}}/4} \quad \text{and} \quad \frac{\mu_e}{\nu_e}\simeq\frac{4}{1+\nu^{1/2}_{*e}+\nu_{*e}}}{\frac{\nu_e}{\text{t.p. viscosity effect}}}
$$

 \bullet Basic scaling is $D_\eta \propto Z_{\rm eff}/T_e^{3/2}$ but viscosity effects due to large fraction of $\text{trapped particles} \,\, (f_t \simeq 0.7) \,\, \text{cause} \,\, \eta_{\parallel}^{\text{nc}}$ $\int_{\parallel}^{\mathrm{nc}}/\eta_0$ to vary a lot in 98889 pedestal:

 $\eta_{\shortparallel}^{\rm nc}$ \parallel η_0 \simeq 0.4 (on separatrix), \sim 0.7–1.67 (at $\rho_n \simeq$ 0.982a), \sim 1.1–2.1 (at $\rho_{\rm t} \simeq$ 0.96a); lower numbers are from $\epsilon \ll 1$ ONETWO formula, higher ones are approximation above.

• For simplicity of notation the geometrically effective D_{η} will be written as

$$
\boxed{\bar D_\eta \equiv \frac{a^2}{\bar a^2}\,D_\eta,}\quad \text{in which}\quad \frac{a^2}{\bar a^2} \equiv \frac{1}{\langle R^{-2}\rangle} \left\langle \frac{|\vec\nabla \rho|^2}{R^2}\right\rangle \simeq 1.6 \,\, \text{in}\,\, 98889 \,\, \text{pedestal.}
$$

Pedestal Plasma Transport Equations

- Assumptions are made in order to develop this pedestal structure model:
	- 1) Paleoclassical transport dominates density and electron temperature transport in the pedestal, but anomalous transport is dominant from top of pedestal into the core.
	- 2) Electron heating in the pedestal is small; heat mostly just flows out through pedestal.
	- 3) Density is fueled from the edge recycling ion source, perhaps plus NBI core fueling.
- Thus, equilibrium electron density and energy conservation equations are:

$$
\begin{array}{ccc} \displaystyle \langle \vec{\nabla} \cdot (\vec{\Gamma}^{\mathrm{pc}}+\vec{\Gamma}^{\mathrm{an}}) \rangle = \langle S_n \rangle & \implies & \displaystyle -\frac{1}{V'}\frac{d^2}{d\rho^2}\left(V'\bar{D}_\eta n_e\right) + \frac{1}{V'}\frac{d}{d\rho}\left(V'\Gamma^{\mathrm{an}}\right) = \langle S_n(\rho) \rangle, \\ \displaystyle \langle \vec{\nabla} \cdot (\vec{q}_e^{\mathrm{pc}}\!\!+\!\vec{q}_e^{\mathrm{an}}\!\!+\!\frac{5}{2}T_e\vec{\Gamma}) \rangle = 0 & \implies -\frac{M+1}{V'}\frac{d^2}{d\rho^2}\left(V'\bar{D}_\eta \frac{3}{2}n_eT_e\right) \!\!+\!\frac{1}{V'}\frac{d}{d\rho}\left[V'(\Upsilon_e^{\mathrm{an}}\!\!+\!\frac{5}{2}T_e\Gamma)\right] = 0. \end{array}
$$

- Neglecting anomalous density transport in the pedestal, the density equation can be integrated from ρ to the separatrix $(\rho = a)$ to yield
	- − $\lceil d$ dρ $\left(V'\bar D_\eta n_e\right)\bigg]$ ρ $=\dot{N}(\rho),\quad \ \#/\mathrm{s}$ of electrons flowing outward through the ρ surface.
- Neglecting anomalous electron heat xport in pedestal and integrating yields − $\bigg[\frac{d}{d\rho}\bigg($ $V^{\prime}\bar{D}_{\eta}\frac{3}{2}$ 2 n_eT_e \setminus ρ $=\hat{P}_e(\rho),\quad$ effective electron power flow (W) through ρ surface.

Pedestal Electron Density Profile

- Integrating density flow equation from ρ surface to separatrix $(\rho = a)$ yields $n_e(\rho)\,\bar D_\eta(\rho)\,V'(\rho)\;=\; n_e(a)\,\bar D_\eta(a) V'(a) \,+\, \int_\rho^a\! d\hat\rho\, \dot N_e(\hat\rho).$
- However, fueling effect from \dot{N} is often small:

$$
\frac{\int_{\rho_n}^a d\hat{\rho} \, \dot{N}_e(\hat{\rho})}{[n_e \bar{D}_\eta V']_{\rho_n}} \, \simeq \, \frac{(a-\rho_n) \, \dot{N}_e[(a+\rho_n)/2]}{n_e(\rho_n) \, \bar{D}_\eta(\rho_n) \, V'(\rho_n)} \, \simeq \, 0.04 \, \ll \, 1 \quad \, \text{ for 98889 pedestal.}
$$

 \bullet Neglecting fueling and variation of V', integrated density equation becomes

$$
n_e(\rho) \,\bar{D}_\eta(\rho) \,\simeq\, \text{constant} \quad \Longrightarrow \quad n_e(\rho) \,\simeq\, n_e(a) \,\frac{\bar{D}_\eta(a)}{\bar{D}_\eta(\rho)}, \quad \text{within the pedestal},
$$

which is density profile needed for outward diffusive flux to be cancelled by pinch flow.

- Density profile $\sim 1/\bar{D}_{\eta} \sim f(T_e)$ leads to "aligned" n_e , T_e profiles. In 98889 pedestal $n_e(\rho_n)/n_e(a) \simeq 2.14$ whereas model predicts $n_e(\rho_n)/n_e(a) \simeq 1.9$ –4.4.
- Estimate fueling effects with $\dot{N}_e \simeq \dot{N}_e(a)e^{-(a-\rho)/\lambda_n}$ and assume $\lambda_n > a \rho$:

 $n_e(\rho)\,\bar{D}_\eta(\rho)\,V'(\rho) \,\simeq \, n_e(a)\,\bar{D}_\eta(a)\,V'(a) \,+\dot{N}$ which shifts n_e profile outward relative to T_e profile — like in JET/DIII-D comparison experiments?⁷

⁷M.N.A. Beurkens, T.H. Osborne et al., "Pedestal width and ELM size identity studies in JET and DIII-D ...," PPCF 51, 124051 (2009).

Pedestal Electron Temperature Profile

• Using density flow equation in electron energy flow equation and neglecting fueling effect $[(3/2)\dot{N}_e T_e/\hat{P}_e \sim 0.025$ in 98889] yields T_e gradient prediction:

$$
\left|-\frac{dT_e}{d\rho}=\frac{\hat{P}_e(\rho)}{(3/2)\left[V'\bar{D}_\eta\,n_e\right]}\simeq\hbox{ constant,}\right|\;\;\text{because }\hat{P}_e\ \&\ [V'\bar{D}_\eta n_e]\text{ are }\simeq\hbox{constant in pedestal.}
$$

• This predicts electron temperature gradient scale length ("pedestal width") at the density mid-point is (98889 data² indicates $L_{Te}/a \simeq 0.02$):

$$
\frac{L_{Te}}{a} \equiv \left[-\frac{a}{T_e} \frac{dT_e}{d\rho} \right]_{\rho_n}^{-1} \simeq \left. \frac{(3/2)[V'\bar{D}_\eta n_e]_{\rho_n} T_e(\rho_n)}{a \ \hat{P}_e(\rho_n)} \right| \simeq 0.033\text{--}0.066 \text{, does not depend on }\rho_*.
$$

• Since $\eta_e \gtrsim 2 \gg \eta_{e,\rm crit} \simeq 1.2$ at top of pedestal, we are in "saturated" ETG regime where anomalous electron heat transport can be represented by^{2,8}

$$
\chi_e^{\rm ETG} \, \simeq \, f_\# \chi_e^{\rm gB} \, \equiv \, f_\# \, \frac{\rho_e}{L_{Te}\,e B_{\rm t0}} \, \simeq \, 0.075 \, f_\# \, \frac{[T_e ({\rm keV})]^{3/2}}{L_{Te}({\rm m}) \, B_{\rm t0}^2({\rm T})^2} \, \, {\rm m}^2/{\rm s}, \quad \ {\rm with}^{2,8} \, f_\# \simeq 1.4\!-\!3.
$$

• Estimate the pedestal height by equating the ETG heat flow $\Upsilon_{eETG} \simeq$ $-n_e \chi_e^{\rm ETG}$ $e^{ETG}dT_e/d\rho$ to the paleoclassical electron heat flow to obtain

 $\beta_e^{\rm ped} \equiv$ $n_{e}^{\rm ped}T_{e}^{\rm ped}$ e $B_\mathrm{t0}^2/2\mu_0$ ∼ 3 √ 2 $\pi f_\#$ $\eta_{\shortparallel}^{\rm nc}$ \parallel η_0 $\bm{L_{Te}}$ $\bm{R_0q}$ $\simeq 0.0035$ –0.007 prediction vs. 0.002 in 98889 pedestal.

 ${}^{8}F$. Jenko et al., "Gyrokinetic turbulence under near-separatrix or nonaxisymmetric conditions," Phys. Plasmas 16, 055901 (2009).

Pedestal Ion Temperature Profile

- Ion heat transport in H-mode pedestals is apparently a complicated mix of comparable neoclassical and paleoclassical transport throughout the pedestal, transition to ITG-driven anomalous transport in the core, and kinetic effects in the bottom half of the pedestal, near the separatrix.
- Neglecting anomalous ion heat transport and kinetic effects, and integrating the ion energy equation as was done for the n_e and T_e equations yields

$$
-\frac{dT_i}{d\rho}\simeq\frac{P_i(\rho)/V'}{(3/2)n_i\bar{D}_\eta+n_i\chi_i^\text{nc}},\ \ \, \Bigg|\frac{L_{Ti}}{a}\Bigg|_{\rho_n}\equiv\left[-\frac{a}{T_i}\frac{dT_i}{d\rho}\right]_{\rho_n}^{-1}\!\!\simeq\frac{[(3/2)\bar{D}_\eta+\chi_i^\text{nc}]_{\rho_n}n_i(\rho_n)\,T_i(\rho_n)}{a\,P_i(\rho_n)/V'}.
$$

- \bullet Since $n_i\bar{D}_\eta$ and χ_i^{nc} $_i^{\mathrm{nc}}$ are nearly constant in the pedestal, the ion temperature gradient $dT_i/d\rho$ is also approximately constant in the pedestal.
- For the 98889 pedestal $[L_{Ti}/a]_{\rho_n} \simeq 0.06$ versus prediction of 0.12–0.21 it seems that both the χ_i^{nc} \sum_{i}^{nc} and χ_i^{pc} i^{pc} theoretical values are a bit too large?²
- Determining "top" of T_i pedestal is problematic because multiple ion heat transport processes are involved and ITG transport is likely near threshold.

Pedestal Toroidal Flow Profile And Radial Electric Field

- Poloidal ion flow should be predicted by neo theory: $V_{\text{pi}} \simeq (k_i/q_iB_{\text{t0}})(dT_i/d\rho)$.
- Equation for plasma toroidal angular momentum has been derived recently.⁵
- Neglecting 3D and microturbulence effects, but including paleoclassical transport and charge-exchange momentum losses $\langle \vec{e}_{\zeta} \cdot \vec{S}_{m} \rangle \simeq -\nu_{\text{cx}}L_{\text{t}}$ yields

$$
-\frac{1}{V'}\frac{d^2}{d\rho^2}[V'\bar{D}_\eta L_\mathrm{t}]\,\simeq\,-\,\nu_\mathrm{cx} L_\mathrm{t},\quad\text{in which}\quad L_\mathrm{t}\equiv m_i n_i\langle R^2\rangle\Omega_\mathrm{t}\text{ is total plasma ang. mom.}
$$

- Neglecting charge-exchange losses and analyzing as for density profile yields¹ $\boxed{\Omega_{\rm t}(\rho)\simeq{\rm constant}\quad\Longrightarrow\quad \Omega_{\rm t}(\rho)\,\simeq\,\Omega_{\rm t}(a)\quad{\rm in\,\,pedestal,\,}\quad} \quad {\rm as\,\, found\,\,in\,\,98889\,\,pedestal.}$
- Adding charge exchange effects and again assuming $\lambda_n > a \rho$ yields¹ $\Omega_{\rm t}(\rho) \ \simeq \ \Omega_{\rm t}(a) \left[1 - (a-\rho) \lambda_n \nu_{\rm cx}(a)/\bar{D}_\eta(a) \right], \;\;\;\;\; {\rm linearly\; increasing}\; \Omega_{\rm t} \,\, {\rm with} \,\, \rho^{.10,11}$
- Adding ripple effects reduces $\Omega_{\rm t}$ in pedestal $\propto \delta B_N^2$, as observed in JET.⁷
- Electric field is determined from radial force balance once Ω_t is known:

$$
E_\rho=|\vec{\nabla}\rho|\left(\Omega_{\rm t}\psi'_{\rm p}+\frac{1}{n_iq_i}\frac{dp_i}{d\rho}-\frac{k_i}{q_i}\frac{dT_i}{d\rho}\right)~~\simeq |\vec{\nabla}\rho|\frac{1}{n_iq_i}\frac{dp_i}{d\rho}~~\text{since}~\Omega_{\rm t}~\text{and}~\frac{dT_i}{d\rho}~\text{are small}.
$$

⁹W.M. Stacey,"The effects of rotation, electric field, and recycling neutrals on determining the edge pedestal density ...," PoP 17, 052506 (2010). ¹⁰J.S. deGrassie, J.E. Rice, K.H. Burrell. R.J. Groebner, and W.M. Solomon, "Intrinsic rotation in DIII-D," PoP 14, 056115 (2007).

¹¹T. Pütterich et al., "Evidence for Strong Inversed Shear of Toroidal Rotation at the Edge-Transport Barrier in AUG," PRL 102 , 025001 (2009).

Discussion I: Sources Of Error And Pedestal Evolution

• Determination of $D_\eta \propto f(\nu_{\ast e}) Z_{\rm eff}/T_e^{3/2}$ is critical but (factors $\lesssim 2$):

 Z_{eff} is often assumed to be constant in pedestal² but should decrease toward separatrix. A better formula for $\eta_{\parallel}^{\rm nc}$ $\frac{\pi}{\parallel}^{\text{nc}}$ is needed than the $\epsilon \ll 1$ formula used in ONETWO. In paleoclassical theory D_{η} should be multiplied by fraction of $\psi_{\rm p}$ due to local $\langle \vec{J}\cdot\vec{B}\rangle$.

• The β_e^{ped} prediction here is just for the initial, transport-limited pedestal height immediately after L-H transition or an ELM:

Pedestal should reach this state in $\tau \sim (2L_{Te})^2/\bar{D}_\eta$ (~ few ms for 98889 parameters²).

Then, top of pedestal moves radially inward as core plasma re-equilibrates — but n_e and T_e profiles in the pedestal should remain fixed on the longer "global" τ_E time scale.

Continuing growth and inward spreading of top of T_e profile eventually violates peelingballooning (PB) instability boundary and precipitates an ELM.

If electron heat flow through pedestal \hat{P}_e is too large, P-B limit could be exceeded before this "quasi-equilibrium" $\beta_e^{\rm ped}$ $_e^{\rm ped}$ is reached — then T_e would rise linearly between ELMs.

In this situation one would obtain more frequent Type I ELMs, perhaps accompanied by Type II ELMs if high-*n* ballooning limit is exceeded in bottom half of the pedestal.

Discussion II: Interpretations Of ELM-free Pedestals

• Plasma should revert to L-mode if microturbulence-induced anomalous transport fluxes exceed paleoclassical ones, i.e., for

 $D^{\rm an}>D^{\rm pc}_{\rm eff}\simeq f_D D_\eta$ where f_D (~ 0.1 in $98889^2)$ is degree of diffusion reduction by pinch, $\chi_e^{\rm an} > \chi_e^{\rm pc} \simeq (3/2) (M+1) D_\eta \; {\rm for\; electron\; heat\; transport}.$

- However, since $D_{\text{eff}}^{\text{pc}}/\chi^{\text{pc}}_{e}\sim f_{D}/M\ll1$ (ratio is ~0.03 in 98889) an "intermediate" regime with T_e pedestal but less n_e pedestal can exist because: Microturbulence-induced anomalous transport typically has $D^\text{an} \sim \chi^{\text{an}}_{e}$ $_{e}^{\mathrm{an}}$. For $D^{\rm an}>D^{\rm pc}_{\rm eff}$ but $\chi_e^{\rm an}<\chi_e^{\rm pc},\, |dn_e/d\rho|$ is reduced but $|dT_e/d\rho|$ does not change.
- Possible ELM-free modes of operation where this could be occuring are: $\operatorname{QH-}\mathrm{modes}\ \text{in}\ \text{DIII-D}\ \text{with}\ \text{EHOs}\ \text{providing}\ D^\mathrm{an}>D_{\text{eff}}^{\text{pc}},$ EDA H-modes in C-Mod with EDAs providing $D^{\text{an}}>D^{\text{pc}}_{\text{eff}},$ and ${\rm I}\textrm{-modes in C-Mod with ``moderate''\ microturbulence causing } D^{\rm an}>D^{\rm pc}_{\rm eff}\textrm{ but }\chi^{\rm an}_e<\chi^{\rm pc}_e.$
- Effects of RMPs on pedestal can also be interpreted with this model: Key RMP effects: 12 $n_e(a)\downarrow$ and $\max\{|dT_e/d\rho|\}\!\uparrow$ by factors of 2; but $T_e^{\rm ped}\simeq$ constant. For separatrix $n_e(a)\!\downarrow$ model predicts $|dT_e/d\rho|\!\uparrow, \,\beta_e^{\rm ped}$ $_e^{\rm ped}\downarrow$ (by same factor); $T_e^{\rm ped}\simeq \rm const.$

¹²T.E. Evans et al., "Edge stability and transport control with resonant magnetic perturbations in collisionless ...," Nature Physics **2**, 419 (2006).

Suggested Experimental Validation Tests I

• This new pedestal structure model is quantitatively consistent (factor \sim 2) with 98889 data² and qualitatively agrees with pedestal evolution and ELM-free H-mode regimes. However, it needs to be validated by testing:

its scaling properties, over wider data sets and its ELM-free mode predictions.

- Like neoclassical transport, no phenomenology underlies paleoclassical transport that can be tested experimentally — but resistivity is neoclassical.
- The most fundamental tests of this new pedestal structure model are:

#1: When fueling effects are negligible, is $n_e(\rho) \bar{D}_{\eta}(\rho) \simeq$ constant within the pedestal?

 $#2$: Is T_e gradient approximately constant in the pedestal at the predicted magnitude?

#3: Does "pedestal width" $[L_{Te}/a]_{\rho_n}$ at pedestal density mid-point scale as predicted? When other parameters are held constant, the T_e gradient scale length should increase slightly with non-cirularity ($\propto V'$), and with electron density n_e and temperature T_e at the mid-point of the pedestal density profile (ρ_n) . In addition, it should decrease with increased conductive electron heat flow \hat{P}_e at constant $n_e(\rho_n)$.

#4: Can it be shown that long wavelength $(k_{\perp} \rho_i \lesssim 1)$ fluctuations within the pedestal do not contribute significantly to plasma transport there?

• Secondary tests that result from added effects are:

#1: Does the top of the density pedestal occur where $d \ln D_{\eta}/d\rho \lesssim 1/a$ with a height predicted by the minimum of $n_e(a)\bar{D}_\eta(a)/\bar{D}_\eta(\rho_{\rm t})$ or $\max\{n^{\rm ped}\}\sim \dot{N}a/\bar{D}_\eta V'?$

 $#2$: Are edge fueling effects on the pedestal n_e profile as predicted? And does this shift the pedestal n_e profile outward relative to the T_e profile as ρ_* is decreased in DIII-D?⁷

#3: Is the "initial" quasi-stationary pedestal electron pressure height predicted by $\beta_e^{\rm ped}$ $_e^{\mathrm{ped}}$? And at top of the T_e pedestal do ETG-type fluctuations cause $\chi_e^{\rm ETG}$ $_e^{\rm ETG} \gtrsim \chi_e^{\rm pc}$ $_e^{pc}$ there?

#4: When cx effects are negligible, is total plasma toroidal rotation frequency $\Omega_t \simeq V_t/R$ \sim constant in pedestal at its separatrix value $\Omega_t(a)$? Are cx effects on $\Omega_t(\rho)$ as predicted?

• Improvement scenario predictions for how to reduce $d\beta^{\text{ped}}/d\rho$ and/or the pedestal height $\beta_e^{\rm ped}$ $_{e}^{\text{ped}}$ to avoid P-B ELM stability boundary are:

#1: Reduce the pedestal height by reducing the electron separatrix density $n_e(a)$ for a given \ddot{P}_e (via more pumping or divertor structure) — as apparently occurs with RMPs? #2: Reduce the pedestal T_e gradient by reducing $\hat P_e / V'$ with larger V' (via more highly shaped plasmas) and/or by reducing \hat{P}_e (e.g., via larger Q_{ei} at higher n_e).

 $#3$: Add a small density flux in pedestal (via controlled fluctuations or RF waves resonant there?) — as apparently occurs in QH-modes, EDA H-modes and I-modes.

 $#4$: Prevent pressure increase and inward growth of the T_e pedestal "top" by decreasing n_e at the pedestal top via reducing $n_e(a)$ (via external pumping?) on the τ_E time scale?

- Some areas where C-Mod could make unique validation contributions are: Fundamental $\#1$, $\#2$: Do n_e and $dT_e/d\rho$ scale as predicted for various heating methods? Secondary $\#2$, $\#4$: Do atomic physics effects affect n_e , Ω _t pedestal profiles as predicted? Secondary #3: Does $\beta_e^{\rm ped}$ prediction explain C-Mod $\alpha\sim R_0q^2\,d\beta/d\rho$ pedestal scaling? Scenario #3: Do EDA H-modes and I-modes have $D^{\text{an}}> D^{\text{pc}}_{\text{eff}}$ but $\chi^{\text{an}}_{e}<\chi^{\text{pc}}_{e}$?
- Some areas where NSTX could make unique validation contributions are: Fundamental $\#1,\,\#2,\,\#3$: Does $D_\eta \propto \eta_{\parallel}^{\mathrm{nc}}$ $\frac{hc}{\parallel}$ predict effects with/without Li walls? Fundamental #4: Do $k_{\perp} \varrho_i \lesssim 1$ fluctuations cause negligible transport at low n_e, T_e ? Secondary $\#2$, $\#4$: Do atomic physics effects affect n_e , Ω_t pedestal profiles as predicted? Secondary #3: Do ETG fluctuations cause T_e transport at top of pedestal but not in it?

Summary

- Key predictions of this paleoclassical-based pedestal structure model are: $|dT_e/d\rho|\propto \varrho_*^0$ $\frac{0}{\ast}$ increases until electron heat flow can be carried out through pedestal. The n_e profile adjusts to minimize net paleoclassical density transport $(D_\eta \text{ vs. } V_{\text{pc}})$. Plasma toroidal rotation $\Omega_t(\rho)$ is nearly constant at separatrix value for small cx effects.
- "First round" tests of this model have found: agreement with 98889 pedestal data 2 to within a factor $\sim 2,$ plausible pedestal evolution scenarios for precipitating Type I and II ELMs, and interpretations of ELM-free H-modes via slightly increased D^{an} or reduced $n_e(a)$.
- Many experimental validation tests have been suggested: 4 fundamental, 4 secondary and 4 improvement scenarios.
- Additional notes:

Achieving control of density buildup in H-mode pedestals (via scenarios $\#1, \#3$ or $\#4$?) is a desirable goal. It may be critical for ITER to heat a low n_e H-mode startup plasma to fusion burning conditions before adding density to increase fusion power output.

Paleoclassical transport is a minimum transport level; adding other transport processes weakens the pedestal gradients (particularly of density) and increase its width.

Regime: Paleoclassical Transport Likely Dominates At Low T_e

- \bullet Since $D_\eta \propto \eta \propto 1/T_e^{3/2},\,\,\chi_e^{\rm pc}$ $_{e}^{\mathrm{pc}}$ in the confinement region (I) is typically $\chi_{eI}^{\rm pc}$ \sim $Z_{\rm eff}[\bar{a}({\rm m})]^{1/2}$ $[T_e(\mathrm{keV})]^{3/2}$ m^2 $\frac{\text{m}}{\text{s}} \ \gtrsim \ 1 \ \text{m}^2\text{/s for } T_e \lesssim 2 \ \text{keV}.$
- Microturbulence-induced transport usually has a gyroBohm scaling:

$$
\text{ITG, DTE: } \ \chi_e^{\text{gB}} \equiv f_\# \frac{\varrho_s}{a} \frac{T_e}{eB} \simeq 3.2 f_\# \frac{[T_e (\text{keV})]^{3/2} A_i^{1/2}}{\bar{a}(\text{m}) \, [B(\text{T})]^2} \frac{\text{m}^2}{\text{s}} \gtrsim \ 1 \ \text{m}^2\text{/s for } T_e \gtrsim 0.5 \ \text{keV}/f_\#^{2/3},
$$

in which $f_{\#}$ is a threshold-type factor that depends on magnetic shear, T_e/T_i , ν_{*e} etc.

- Thus, paleoclassical electron heat transport is likely dominant at low T_e : $T_e \lesssim \left|T_e^{\rm crit} \equiv [B({\rm T})]^{2/3} [\bar{a}({\rm m})]^{1/2}/(3f_{\#})^{1/3} \right. \ {\rm keV} \left| \sim 0.6\text{--}2.4 \ {\rm keV} \ (f_{\#} \sim 1/3), \ {\rm present \ expt.} \right.$
- In DIII-D the electron temperature T_e in the H-mode pedestal ranges from about 100 eV at the separatrix to about 1 keV at top of pedestal

 \implies paleoclassical $\chi_e^{\rm pc}$ $_e^{\rm pc}$ is likely to be dominant in DIII-D H-mode pedestal region.

 \bullet In ITER T_e^{crit} $e^{\text{crit}} \sim 3.5\text{--}5 \,\text{ keV} \quad \Longrightarrow \quad \text{paleoclassical may be dominant for}$ ITER ohmic startup and in the pedestal region?

Paleoclassical Model Is Result Of Coordinate Transformation

• Background:

Transport codes use toroidal-flux-based coordinates nearly fixed to lab coordinates.

But particle guiding centers are fixed to poloidal flux via $p_{g\zeta} = mRv_{\parallel}-q\psi_p$ conservation. Thus, drift-kinetic, gyrokinetic and plasma transport equations must be transformed¹³ from laboratory to poloidal magnetic flux (ψ_p) coordinates.

Poloidal flux surfaces ψ_p move relative to toroidal surfaces ψ_t at the ${\cal O}\{\delta^2\}$ magnetic diffusion rate — diffuse because of plasma resistivity and advect because of ECCD etc. Guiding centers of particles diffuse and advect radially along with the poloidal flux $\psi_{p}.^{\text{14}}$

- Paleoclassical transport model^{15,16} results from¹⁴ transforming drift-kinetic equation from lab to poloidal flux coordinates, $\partial f/\partial t|_{\vec{x}} \implies \partial f/\partial t|_{\psi_p}$ etc.
- This transformation results in addition^{14–16} of a second order diffusive-type paleoclassical operator $\mathcal{D}\{f\}$ to the right side of the drift-kinetic equation.
- Paleoclassical transport operator $\mathcal D$ is not purely diffusive because it repre- ${\rm sents\;direct\;}\mathcal{O}\{\delta^2\}$ process; particles carried on diffusing $\psi_p,\,\langle\Delta x_{\psi_p}\rangle/\Delta t\!=\!0.$

¹³R.D. Hazeltine, F.L. Hinton, and M.N. Rosenbluth, "Plasma transport in a torus of arbitrary aspect ratio," Phys. Fluids 16, 1645 (1973). ¹⁴J.D. Callen, Phys. Plasmas 14, 040701 (2007); 14, 104702 (2007); 15, 014702 (2008).

¹⁵See http://homepages.cae.wisc.edu/∼callen/paleo for an annotated list of publications about the paleoclassical transport model. ¹⁶J.D. Callen, "Paleoclassical transport in low-collisionality toroidal plasmas," Phys. Plasmas 12, 092512 (2005).

Transformed Density Equation Includes Paleoclassical Effects

• FSA paleoclassical density transport operator $\mathcal{D}\sim\mathcal{O}\{\delta^2\}$ is^{5,6}

$$
\langle \mathcal{D}\{n_0\}\rangle \equiv \ -\ \dot{\rho}_{\psi_p} \frac{\partial n_0}{\partial \rho} \ + \ \underbrace{\langle \vec{\nabla} \cdot n_0 \vec{u}_G \rangle}_{\psi_p \text{ advection}} + \ \underbrace{\frac{1}{V'} \frac{\partial^2}{\partial \rho^2} (V' \bar{D}_\eta n_0), \quad \dot{\rho}_{\psi_p} \equiv \frac{\dot{\psi}_p}{\psi_p'}, \quad \bar{D}_\eta \equiv \frac{D_\eta}{\bar{a}^2}, \\ \psi_p \text{ advection} \qquad \frac{1}{\bar{a}^2} \equiv \frac{1}{\langle R^{-2} \rangle} \left\langle \frac{|\vec{\nabla}\rho|^2}{R^2} \right\rangle \simeq \frac{1}{a^2}, \quad \langle \vec{\nabla} \cdot \vec{u}_G \rangle = \frac{1}{V'} \frac{\partial V'}{\partial t}\Big|_{\rho}.
$$

• Including transformation effects, FSA density equation can be written as

$$
\frac{1}{V'}\frac{\partial}{\partial t}\bigg|_{\psi_p}(V' n_0)\ +\ \dot{\rho}_{\psi_p}\frac{\partial n_0}{\partial \rho}\ +\ \frac{1}{V'}\frac{\partial}{\partial \rho}(V'\, \Gamma)\ \ =\ \frac{\langle \bar{S}_n\rangle}{\text{sources}}\,,\\ \psi_p\ \text{advection}\quad \text{transport} \\
$$

 $\ ,\vert \qquad V^\prime n_0 \hbox{ is $\#\$ particles between }$ ρ and $\rho + d\rho$ surfaces, an adiabatic plasma property.

• The total $\mathcal{O}\{\delta^2\}$ particle flux for each species is:

$$
\Gamma \equiv \langle \vec{\Gamma} \cdot \vec{\nabla} \rho \rangle = \Gamma^a + \Gamma^{na} + \Gamma^a_{\text{pc}} = \langle \left[\underbrace{n_0(\vec{\bar{V}}_2 - \vec{u}_G)}_{\text{collisional}} + \underbrace{\overline{\tilde{u}_1 \tilde{V}_1}}_{\text{fluctuations}} \right] \cdot \vec{\nabla} \rho \rangle - \frac{1}{V'} \frac{\partial}{\partial \rho} (V' \bar{D}_{\eta} n_0).
$$

• Paleoclassical particle flux has diffusive and pinch (V_{pc}) components:

$$
\Gamma^a_{\rm pc}\equiv -\frac{1}{V'}\frac{\partial}{\partial \rho}(V'\bar D_\eta n_0)=-\,\bar D_\eta\frac{\partial n_0}{\partial \rho}+n_0V_{\rm pc},~~{\rm with}~~V_{\rm pc}\equiv -\frac{1}{V'}\frac{\partial}{\partial \rho}\,(V'\bar D_\eta)\sim -\frac{3\,\bar D_\eta}{2\,L_{Te}}.
$$