Pedestal modification via lower hybrid waves

J.W. Hughes, A.E. Hubbard, R.M. McDermott, M.L. Reinke, J.E. Rice, G. Wallace, M. Churchill, B. LaBombard, L. Lin, R.R. Parker, S.M. Wolfe *MIT PSFC* J.R. Wilson *PPPL*

> C-Mod/NSTX Pedestal Workshop Princeton, NJ September 7—8, 2010

EDA H-mode target demonstrates clear response to LHRF

- Modest ICRF heating
 - H-mode triggered in LSN
 - Shift to USN with cryopumping used to obtain minimum possible density prior to lower hybrid turn-on (n_{II}=2.3)
- Results include:
 - Core density reduction
 - Substantial increase in core T_e
 - Net increase in W_P
 - Effect sustained for multiple τ_E , τ_{CR}

 Data and modeling suggests relatively low current drive (f_{CD}<4%) in this target

Significant modification to pedestal profiles leads to global change

- Steady state n_{PED} reduction is observed: as much as 30% in 600kA discharges
- Relaxation of n_e gradient, boost in SOL n_e
 - Beneficial for LH coupling, wave penetration into core plasma
- T_{PED} increases by up to 50%
 - Beneficial for LH damping in core
- Pressure pedestal nearly invariant, with p_{PED} constant or slightly increasing
- ~50% increase in D_{eff} at LCFS
- Pedestal collisionality drops from ~4 to ~1 in this case (v*₉₅)
 - EDA H-mode is maintained throughout

Time behavior shows effects propagating in from edge

- Prompt edge response observed upon application of LH
 - Changes in Ly_α emissivity profile indicate fast changes in edge/SOL profiles
 - Divertor probes measure prompt increase in particle flux
 - Changes in QCM observed
- Global density decrease continues after initial edge modification
- H-modes stay in EDA Hmode throughout LH phase
- QCM mode characteristics altered → more particle transport drive?

Edge and core rotation modified on different time scales

- Natural pedestal toroidal rotation *co-I_P* in H-mode
- LHRF introduces a counter-I_P change in pedestal toroidal rotation
 - Precedes most other pedestal modification
 - followed ~100ms later by change in central V_{tor}
- Is the pedestal rotation influencing the transport?

Recently H-mode modification was extended to lower n_{II}

- EDA H-mode density reduced to similar plateau during LH flattop
- Lower LH power was used with same (perhaps improved) effectiveness
- Improved coupling was obtained with reduced n_{||} in the newer experiment
 - Provided immediate test of whether core accessibility matters (it doesn't)

Obtained a LH power scan in 600kA EDA H-modes

- Effect previously observed over narrow range of P_{LH} (mostly 800—950kW)
- In new experiment, flattop LH power was varied by a factor of ~5x
- Initial dn/dt, final n, fairly insensitive to P_{LH}, down to ~300kW
- Reduced pump-out rates seen at 120—200kW
- Control shot with P_{LH}=0 had an early H-L transition

Outstanding questions

- Behavior of EDA H-mode plasmas can be dramatically impacted by application of lower hybrid waves
 - Still early stages of evaluation; current experiments are exploring range of effect at varied $P_{LH},\,n_{\parallel},\,plasma$ characteristics
 - Demonstrated that core wave accessibility is unnecessary
 - Determined that effect is insensitive to total LH power, at or above about 300kW
- Effects, though mysterious, are generally beneficial
 - LHCD is more efficient in low density, high temperature targets
 - Application of LH directly produces an edge effect which promotes core coupling!
- Measurements, and promptness of edge effects, suggest a direct interaction of LH waves with pedestal/SOL
 - Direct effect of waves on transport?
 - Electron heating effect?
 - Direct momentum input?