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Anomalous Electron Viscosity for Pedestal Plasmas  

• With addition of the anomalous electron viscosity me under the assumption 

that me~ce, it is found from simulations using a realistic high Lundquist 

number S, BOUT++ simulations show that

– the pedestal collapse is limited to the edge region 

– the ELM size is about 5-10% of the pedestal stored energy. 

These are consistent with observations of large ELMs.

• CDBM transport model: Itoh et al

• Thermal diffusivities of the CDBM model is based on the theory of self-sustained 

turbulence due to the ballooning mode driven by the turbulent current diffusivity. 

 Itoh K. et al 1993 Plasma Phys. Control. Fusion 35 543

 Itoh K. et al 1994 Plasma Phys. Control. Fusion 36 279

• J Drake’s latest 3D PIC simulations for earth’s magnetosphere show that

– Breaking field lines during reconnection: it’s anomalous viscosity not anomalous 

resistivity

– J. Drake, Cambridge Summer Workshop on Gyrokinetics, July 26,2010
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Using hyper-resistivity hH

SH=m0R
3vA/hH=S/aH

The basic set of equations for the MHD peeling-ballooning modes
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After gyroviscous cancellation,

the diamagnetic drift modifies 

the vorticity and additional 

nonlinear terms

Using force balance and 

assuming no net rotation, 

Er0=(1/NiZie)┴Pi0

Using resistive MHD term, 

resistivity can renormalized 

as Lundquist Number

S=m0RvA/h

Non-ideal physics



4

Time step collapses

Lundquist number S plays a critical role on nonlinear ideal ballooning mode

Time step collapses at high Lundquist number S w/o hH
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Radial profile of averaged perturbed parallel current dj|| at outside midplane: 

resolving the classical current sheet is a formidable task

Pi=Pe=0.5P0
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Scaling for the generalized Ohm’s law
Hyper-resistivity prevents J|| layer from collapsing to the resistive scale

The magnetic flux surfaces must reconnect before the 

pedestal plasma collapses 

The relevant radial scale lengths for the generalized Ohm’s law:

q spacing q

J layer J

Hall-MHD (~di)

Skin depth(~de)

Enhanced resistivity due to turbulence: a common practice

 leads to significantly different growth rates and instability thresholds

 In nonlinear RMHD, the pedestal pressure collapses deep inside the plasma core

Viscous MHD(H): (?)

,ˆˆˆ1ˆ1ˆˆ
ˆ

ˆ

,
1

| |

2

| || |

| |

4

| |

2

| |

| |

| |

2| |

4

0

| |

2

0

| |

| |

ˆˆ
t

j

L
pb

L
A

S
A

St

A

t

j

ne

m
pb

ne
AA

t

A

e
e

i

H

eH
eH











































































dd


mh
m

h

m

h




Postulatin



7

Scaling for the generalized Ohm’s law
Hyper-resistivity prevents J|| layer from collapsing to the resistive scale in low collision regime

The magnetic flux surfaces must reconnect before the 

pedestal plasma collapses 

The relevant radial scale lengths for the generalized Ohm’s law :

q spacing q

J layer J

Hall-MHD (~di)

Skin depth(~de)

Enhanced resistivity due to turbulence: a common practice

 leads to significantly different growth rates and instability thresholds

 In nonlinear RMHD, the pedestal pressure collapses deep inside the plasma core

Viscous MHD(H): (?)
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The mechanisms for hyper-resistivity hH in pedestal plasmas

 The mechanism for hyper-resistivity hH is often attributed to the presence of 

chaos in the magnetic field structure of a plasma

• hH leads to a flattening of the current density profile

 In edge plasmas, hH may be generated by a broad spectrum of kinetic scale 

electron turbulence with closely spaced mode rational surfaces:

•Dissipative drift-wave turbulence

•Dissipative trapped electron modes (DTEM)

•Electron temperature gradient driven modes (ETG)

•Rechester-Rosenbluth-type electron diffusion in stochastic B-field

 Hyper-resistivity has often been used in MHD computations as a form of 

subgrid modeling, such as

•in RFPs,  in spheromaks, for laboratory, solar, and astrophysical 

applications
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Hyper-resistivity can be used to set the finest 

resolved radial scale in simulations
The hyper-Lundquist number 

SH =m0R
3vA/hH = S/aH, 

with a dimensionless hyper-Lundquist parameter 

aH = hH/(R2h).

For a collisional electron viscosity, 

aH =me/(R
2nei). 

Assuming me ce1 m2/s and nei 105, we can estimate the 

amplitude of the hyper-Lundquist parameter to be 

aH10−4 - 10−6.

For real pedestal plasmas SH = 1012, the 

viscous layer width can be estimated as

Lp>q>H>x>i(di,de)>J

mmR
SH
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Nonlinear simulations of peeling-ballooning modes with 

anomalous electron viscosity and their role in ELM crashes

We do not completely understand anomalous electron viscosity 

me/hyper-resistivity hH

but we will use the parameter to model ELM dynamics 

 assuming me~ce

In our present model,  the frozen-in flux condition of ideal MHD

theory is broken by

 resistivity 

 hyper-resistivity

During the campaign of FES Joint Theory and Experiment Research Target 2011

We may use GYRO to compute ce and me, and assess the assumption
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Flux-surface-averaged pressure profile 2m0 <P>/B2 vs S with SH=1012 

low S -> large ELM size, ELM size is insensitive when S>107

ELM size= Wped/ Wped

Wped= the ELM energy loss

Wped =pedestal stored energy

(1) a sudden collapse as:  P-B modes -> magnetic reconnection -> bursting process

(2)  a slow backfill as a turbulence transport process

R1 R2
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Line trace during pedestal pressure crash shows a novel feature of ideal MHD 

characteristics in peak gradient region and island formation on top of the pedestal

(a) radial distance x vs safety factor q, dashed lines 

show rational surfaces q=m/n with n=15; 

(b) line trace for S = 108 and SH = 1012 during pedestal 

pressure crash in field-aligned coordinate (x,y,z); 

(c) a zoom-in view of small region x=[-0.41,-0.35] in (b) 

to show the island formation.
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CDBM Transport Model
Itoh, Fukuyama, Yagi, et al.  PPCF 1993, PPCF 1994

 Thermal diffusivities of the CDBM model is based on the theory of self-sustained 

turbulence due to the ballooning mode driven by the turbulent current diffusivity.

• Drive: Inclusion of the electron viscosity allows the electromagnetic fluctuation 

 to enhance electron viscosity 

 to make instabilities more unstable in a short-wavelength mode

• Sink: As the fluctuation amplitude increases, the stabilizing effect due to the anomalous thermal 

diffusivity c and the ion viscosity mii eventually overcomes the destabilizing effect of the current 

diffusivity me. 

• Pedestal width: The steady pedestal profile is determined by the balance of these effects.

 By solving an eigen-value problem for the ballooning mode, a general expression of the 

turbulent thermal diffusivity can be obtained as

 BOUT++ simulations can be used to verify the transport model.

 An similar analysis to EPED for KBM can be done to get pedestal width.

The fitting parameter, C = 12, is determined

by comparing the energy confinement time 

For the Standard plasma parameters with the 

ITER-89P L-mode scaling law
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The brief outline for the CDBM modes, Itoh, Fukuyama, Yagi, et al. 
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•The parameters mii, c, hH are anomalous transport coefficients

•The marginal stability condition of the linearized set of 

equations yields  the constrain between the plasma pressure 

gradient and the fluctuation-induced transport coefficients

•Assuming the Prandtl number is unity, 

mii/c1, me/c 1
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Breaking field lines during reconnection: it’s anomalous viscosity not anomalous resistivity 
J. Drake, Cambridge Summer Workshop on Gyrokinetics, July 26,2010

 For earth’s magnetosphere application, the 3D 

PIC simulations show:

 Turbulence is driven by the electron current 

during low-βe reconnection with a guide field

 Current driven instabilities such as Buneman 

or the lower hybrid instability develop and 

produce anomalous resistivity and electron 

heating but do not stop the electrons from 

running away

 The continued thinning of the current layer 

continues until an electromagnetic electron 

sheared-flow instability breaks up the current 

layer

– The resulting anomalous momentum 

transport is sufficient to balance the 

reconnection electric field

– The rate of reconnection undergoes a 

modest jump as the shear-flow instability 

onsets

Evolution of Ohm’s law as current layer is thinning



16

Summary

 Non-ideal physics effects are essential for pedestal plasma modeling

• Hyper-resistivity can be used to set the finest radial scale in high S simulations 

• From nonlinear simulations, ELM dynamics can be described as

 P-B modes -> magnetic reconnection-> pedestal collapse 

 With addition of the anomalous electron viscosity me under the assumption that 

me~ce, it is found from simulations using a realistic high Lundquist number S

• the pedestal collapse is limited to the edge region 

• the ELM size is about 5-10% of the pedestal stored energy. 

These are consistent with observations of large ELMs.

 CDBM transport model can be one of possible mechanisms for pedestal plasmas

• To provide anomalous energy transport  and yield pedestal width when pedestal height is 

below Peeling-Ballooning instability threshold

• To facilitate the ELM crash when pedestal height is above Peeling-Ballooning instability 

threshold

 Validated BOUT++ simulations can yield a self-consistent  capability to determine pedestal 
height and width as the EPED model

• Model KBM and ETG transport  can be added as well.


