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Unraveling the Mysteries in DIII-D Experiments

(1) What causes transport profile corrugations at the minimum q
of an NCS plasma?

(2) Why is the sawtooth suppressed in hybrid-mode?

(3) Why does QH-mode have edge harmonic oscillations instead
of ELMs?

(4) Does fast wave absorption in beam-heated plasmas weaken
significantly with increasing ion-cyclotron harmonics?
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• The most unexpected result of GYRO simulations has been that plasma 

equilibrium profiles are not smooth, but develop radial “profile
corrugations” at low order rational surfaces like 3/2, 2/1,5/2,3/1.

• The corrugations are on the scale of a few ion gyroradius and most 
pronounced for electron temperature gradient

• The corrugations in GYRO are time and flux surface averages of

zonal flows.

• The corrugations are small in monotonic - q profiles, but expected to

be large in minimum-q (NCS) discharges just as the q-min = 2 surface
enters the plasma.

• The corrugations have now been seen in DIII-D matching the expected 

“bump-dip-bump” structure. As such, this constitutes an indirect 
measurement of zonal flow and confirms the physical reality of the
GYRO profile corrugations.

(1) Gyrokinetic Simulations Observed Profile

Corrugations at Minimum-q of NCS Plasmas
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• GYRO simulation of ECE a/LTe time trace 

(zonal flow) has same bump-dip-bump 

structure at q-min=2.00(-) (RED) but none 
before at q-min=2.01 (GREEN)

(1) Corrugations Observed at qmin=2 are Correlated

with Low Singular Surface Density

Background profile (orange)
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• GYRO simulations are consistent with q-min=2/1 profile corrugation (RED) triggering ITB in ion channel.

• A strong ExB shear layer (lower left) develops at r/a=0.46 making a “gap” in transport power outflow

(lower right RED) allowing interior radii to heat up from deposited power.

• As usual GYRO can match DIII-D experimental transport power flow with 10% adjustments in the ion

temperature gradient.

(1) Corresponding Transport Reduction

May Trigger ITB Formation
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(2) The HYBRID Discharge in DIII-D Has Rotating

3/2 Magnetic Island without Sawteeth

• Presence of 3/2 magnetic island correlates
with absence of sawteeth

• Two complementary mechanisms on possible

role of 3/2 in sawteeth prevention examined

• Rotating 3/2 excites near 2/2 near center

     which mode converts into kinetic Alfven

     wave to drive counter current. Operative

transiently when central q drops close to 1

• 3/2 perturbation initiates anomalous transport

of energetic ions, reduces central NBI current

     drive efficiency, less effect on neutron rate

• Scaling of the sawteeth prevention to ITER

     depends on understanding the phenomenon

     in DIII–D
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(2) Physical Processes in ‘Counter Current Drive’

by the 3/2 Island

3/2 island
(Antenna)

2/2 side band

2/2  near q0=1

q0 drops below qs

(Alfven Resonance)

Long
Wavelength

Alfven
Wave

Kinetic
Alfven
Wave

Island rotation

3/2

Current Driven
Counter to 3/2

Scatters Energetic
Particles
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(2) Estimate of Total Driven Current

is within Range of Experiment
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Numerical Example For DIII-D:
Te = 4(kev), Ti = 7(kev), B =1.7(T ),

3/2
i

=1.5 104(rad /s), 3/2
e

= 4.5 104(rad /s),

i = 0.4(cm), ln =16.7,

=1.6, n = 2,

A = 2. 106(rad /s),

Parabolic q profile= rs /2, rs =10(cm), r3/2 = 30(cm),

f|| =10,f =1.22,JMHD = 4.48 104(Amp /m2 ),
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(2) Additional Anomalous Transport of Beam Ions Adds

to the Robustness of the Scenario

• ONETWO transport simulation
with NuBeam Package

DIII–D Shot 117740

– Beam deposition profile 

broadened by anomalous

transport

– Need to quantify anomalous

transport as due to MHD modes

Total beam driven current depends more sensitively on the assumed
anomalous transport of the energetic ions than the neutron rate
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(3) ELM-free QH & RMP Share Similar Physics

• Peeling-ballooning model has achieved a degree of success in explaining
pedestal constraints, ELM onset and a number of ELM characteristics

– Nonlinear explosive growth of one or many filaments, similar to observations

– Two prong model (conduits and barrier collapse) for ELM losses

• Propose: QH exists in low-n kink/peeling limited regime

– Very low density required with moderate shaping, higher density and
pressure possible with strong shaping

• Agreement with observed QH density range

• ITER study suggests QH regime for neped<~4 1019 cm-3

• Flow shear stabilizes edge-localized RWM (and higher n ballooning), leaves
low-n rotationally destabilized kink/peeling mode most unstable

– With kinetic corrections, this is the EHO

– Saturates by damping rotation and providing particle transport

• Essentially steady state operation in the key edge transport channels

• Low density RMP ELM free discharges in similar regime

– Propose that RMP is playing the role of the EHO -> Controllable, can exist
near or well below stability bound
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(3) New Theory of ELM-free Operation (QH & RMP)
is Based on stability with rotation in low * regime

• QH mode operation generally requires strong counter rotation
in the pedestal region and low density

• The pedestal current is dominated
by bootstrap current

– Roughly proportional to p’

– Decreases with collisionality

• Lower density means more current
at a given p’

– Moderate to high density discharges
limited by P-B or ballooning
modes -> ELMs

– Very low density discharges may hit
kink/peeling boundary

Effect of Low Density

We propose that QH mode exists in
this low n limited regime
Observed density requirement for QH, EHO

mode structure, and profiles agree with

predictions [West 05, Burrell 05]
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• Eigenvalue formulation with rotation and compression derived and included in ELITE

• Sheared flow stabilizes “ELRWM” (Edge Localized RWM branch)

– Allows plasma to reach ~ideal boundary, trigger rotating low-n mode

• Sheared flow strongly damps high n, destabilizing at low-n

– Most unstable n decreases with increasing rotation

– Rotationally de-stabilized low-n modes are limiting in QH regime

• Modes driven by current and rotation, can saturate by damping their own drive

(3) Strong Toroidal Flow Shear in the Edge Region Stabilizes

ELMs and Destabilizes Peeling-Kink (EHO) Modes
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(3) RMP ELM-free Discharges are in Similar Regime

• n=3 Resonant Magnetic
Perturbations used to suppress
ELMs in low density discharges

• ELM-suppressed shots in stable
region, nearest kink/peeling
boundary

– Increasing density causes ELMs
to return

• Propose that RMP plays the role
of the EHO here

– Particle, Te, rotation steady
state

• While EHO grows only to
amplitude needed for steady
state, RMP amplitude can be
controlled

– Able to operate a factor of 2
below stability boundaries
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(4) ORBIT-RF Code Includes Important Finite Orbit and RF

Physics for Treatment of Non-Maxwellian Ions

• ORBIT-RF with TORIC4 qualitatively reproduces DIII-D and C-Mod
experimental results

       DIII-D

– Reasonable agreement with measured neutron enhancements
     at 4 D and 8 D

       C-Mod

– Good agreement with measured fast ion spectrum

• The details of beam distribution modified by RF and collisions are
important to quantitatively evaluate beam-wave interactions

• ORBIT-RF prediction of wave absorption at 4 D and 8 D  follows the
trend of linear theory using analytical slowing down distribution function

– Weak absorption at 8 D differs from AORSA-CQL3D result which does not
include finite drift orbits
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(4) ORBIT-RF Reproduces Stronger Beam Interactions
at 4 D (60 MHz) Than at 8 D (116 MHz) Observed in DIII–D

•  DIII–D high density L-mode

1014 (/s)
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reaction
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 Sn: neutron enhancement factor
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ORBIT-RF104

 NB only

 60  MHz (0.8MW)
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(4) Wave Absorption Critically Depends on the Energy

and Density of Resonant Fast Ions

 DIII-D high density L-mode

k  i (fast ion energy)

4th

8th

J3 J5 J7
J9

E

E     Jl-1 ,   Jl +1

highlow

Injection
angle

Increase in energy of resonant ions

ORBIT-RF shows 4th harmonic resonant
ions occupying a larger phase space
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 (1) What causes transport profile corrugations at the minimum q of an NCS

plasma?
— The corrugations are zonal flows with strong ExB shear that may trigger ITB

 (2) Why is the sawtooth suppressed in hybrid-mode?
— 3/2 tearing mode can excite KAW that transiently drives counter current on-axis

 (3) Why does QH-mode have edge harmonic oscillations  instead

of ELMs?
— QH mode operates at low collisionality with high edge pressure gradient that drives 

strong rotation; ELMS are stabilized but kink-peeling modes (EHO) are destabilized by 

strong rotational shear

(4) Does fast wave absorption in beam-heated plasmas weaken significantly
with increasing ion-cyclotron harmonics?
— 4th harmonic resonant ions have a larger phase space population than 8th harmonic

ions, hence stronger FW damping

Summary


