

Latest Results from the U.S. National Spherical Torus Experiment

Martin Peng NSTX Program Director UT-Battelle, ORNL & Princeton Plasma Physics Laboratory

For NSTX National Team

Third International Conference on Physics

June 24-29, 2002 Lebedev Institute Moscow, R.F.

Columbia U Dartmouth U GA JHU LANL LLNL Lodestar MIT Nova Photonics NYU ORNL **PPPL PSI SNL UC Davis UC** Irvine UCLA UCSD **U** Maryland **U Wash** U Wisc **UKAEA** Fusion Hiroshima U HIST Kyushu Tokai U Niigata U Tsukuba U **U** Tokyo loffe Inst TRINITI **KBSI** KAIST

NSTX is a New Magnetic Fusion Energy Sciences Experiment in the U.S.

New results are expanding the parameter space of toroidal plasma science

- Capabilities; research goals in science and fusion energy
- Solenoid-free startup magnetic reconnection
- Energy confinement turbulence
- Stability at beta (pressure/field²)
 → order unity MHD
- Heating & current drive wavefast ions-plasma interactions
- Plasma heat & particle fluxes plasma edge physics
- Sustainment without induction self-organization

NSTX Facility Has Made Rapid Progress in Capability Since Start of Operation in 9/99

Parameters	Design	Achieved
Major Radius	0.85m ₁	→
Minor Radius	0.68m ³⁻	-//121.21
Elongation	≤2.2	2.5
Triangularity	≤0.6	0.8
Plasma Current	1MA	1.5MA
Toroidal Field	0.6T	≤0.6T
Heating and Curre	ent Drive	
Induction	0.7Vs	0.7Vs
NBI (90keV)	5MW	7MW
HHFW (30MHz)	6MW	6MW
CHI	0.5MA	0.4MA
Pulse Length	≤5s	1.1s

Spherical Torus Permits Studies of High β Plasmas with Strong Shaping & Toroidal Rotational Transform (q ~ 10)

Spherical Torus

Definitions:

- A = aspect ratio
- $\beta_T = 2\mu_0 \langle p \rangle / B_{T0}^2$
- q = toroidal rotational transform

Expanded plasma parameter space:

- Strong plasma shaping (A \ge 1.27, $\kappa \le$ 2.5, B_p/B_t ~1, q_{edge} ~10)
- Stability with hollow current (low internal inductance, I_i)
- High β_T (≤ 40%) & central β_0 (~100%)
- Large plasma flow ($V_{rotation}/V_A \sim 0.25$)
- Large flow shearing rate ($\gamma_{ExB} > 10^{5}/s$)
- Supra-Alfvénic fast ions (V_{fast}/V_A ~4–5)
- High dielectric constant ($\epsilon \sim 30-100$)
- Large curvature in edge magnetic field

Expanded Plasma Parameter Space Potentially Also Lead to Attractive Fusion Energy Devices

Plasma Science of Expanded Parameter Space	⇒	Attractive Energy Development Steps
 Solenoid-free Startup 	⇒	Simplified design, reduced operating cost
 Reduced turbulence 	⇒	Smaller unit size for sustained fusion burn
 Stable high β_T & β₀ 	⇒	Lowered magnetic field and device costs
 Strong wave-energetic particle- plasma interaction 	⇒	Efficient fusion α particle, neutral beam, & RF heating
 Dispersed plasma fluxes 	⇒	Survivable plasma facing components
 Self organization 	⇒	Sustainment without induction

Expanded Plasma Parameter Space Potentially Can Also Lead to Attractive Fusion Energy Devices

Plasma Science of Expanded Parameter Space	\Rightarrow	Attractive Energy Development Steps
 Solenoid-free Startup 	⇒	Simplified design, reduced operating cost
Reduced turbulence	\Rightarrow	Smaller unit size for sustained fusion burn
 Stable high β_T & β₀ 	\Rightarrow	Lowered magnetic field and device costs
 Strong wave-energetic particle- plasma interaction 	\Rightarrow	Efficient fusion α particle, neutral beam, & RF heating
 Dispersed plasma fluxes 	\Rightarrow	Survivable plasma facing components
Self organization	\Rightarrow	Sustainment without induction

NSTX ——

Obtained 390 kA Toroidal Current by Coaxial Helicity Injection (Helicity = ÚA B dV)

Latest NSTX Results

SC3, Moscow, 6/24-29/02

This Enables Studies of Reconnection Needed to Form Nearly Closed Magnetic Surfaces

- Flux surface closure important to solenoid-free startup
- Need effective coupling to solenoid induction and RF heating
- Lundquist No. S(CHI) ~ 10⁴ 10⁶ vs. S(corona) ~ 10¹⁰ 10¹²
- Laboratory investigation of interest to space plasma studies

Expanded Plasma Parameter Space Potentially Can Also Lead to Attractive Fusion Energy Devices

Plasma Science of Expanded Parameter Space	\Rightarrow	Attractive Energy Development Steps
 Solenoid-free Startup 	\Rightarrow	Simplified design, reduced operating cost
 Reduced turbulence 	↑	Smaller unit size for sustained fusion burn
 Stable high β_T & β₀ 	\uparrow	Lowered magnetic field and device costs
 Strong wave-energetic particle- plasma interaction 	$\uparrow \uparrow$	Efficient fusion α particle, neutral beam, & RF heating
 Dispersed plasma fluxes 	\Rightarrow	Survivable plasma facing components
Self organization	\Rightarrow	Sustainment without induction

NSTX ——

Neutral Beam Heating Yields High Ion Temperatures with Strong Plasma Rotation

Latest NSTX Results

SC3, Moscow, 6/24-29/02

Neon Particle Diffusion Rates Measured to be ~2X the Neoclassical limit

- Almost no Neon penetrates into center until MHD event
- Estimated diffusion (MIST) is in the neoclassical range (NCLASS), for r/a < 0.6

Gyrokinetic Theory on Fluctuation Growth Rates Indicates Strong Dependence on T_i/T_e

- ETG: electron temperature gradientITG: ion temperature gradient
- ρ_i : ion gyroradius

Interpretation

- ITG stabilized
- ETG strongly unstable
- Questions
 - High $\beta' \rightarrow$ diamagnetic flow?
 - High $\beta \rightarrow$ magneto-sonic effects?
 - Strong shearing + $T_i \le T_e$

 \rightarrow stabilize both ITG & ETG?

- Need direct measurement of largek fluctuations
 - High $\beta \rightarrow$ stronger electromagnetic fluctuations
 - Larger ρ_e
 - \rightarrow eases ETG measurement

Laboratory High-β (~1) Turbulence Has Interesting Scientific Link with Astrophysics

NSTX Simulation

(GA, LLNL)

Accretion Disk Simulation

(Hawley, Balbus, Univ. Virginia)

- Turbulent momentum transport is needed to fuel black holes.
- Cascades to small eddies that heat electrons and ions.
- High- β laboratory plasmas acquires magnetic turbulence features.
- Benchmark turbulence codes in NSTX high- β plasmas contributes.

Plasmas with Beam Heating Can Surpass "High-Confinement Mode" Level Without Edge Barrier

- Confinement time better than expectations based on Tokamak data
- Encouraging indications for future small fusion energy devices

Expanded Plasma Parameter Space Potentially Can Also Lead to Attractive Fusion Energy Devices

Plasma Science of Parameter Space	Expanded	\Rightarrow	Attractive Energy Development Steps
 Solenoid-free Start 	up	\Rightarrow	Simplified design, reduced operating cost
Reduced turbulence	e	\Rightarrow	Smaller unit size for sustained fusion burn
 Stable high β_T & β₀ 		⇒	Lowered magnetic field and device costs
 Strong wave-energed plasma interaction 	etic particle-	\Rightarrow	Efficient fusion α particle, neutral beam, & RF heating
 Dispersed plasma 	fluxes	\Rightarrow	Survivable plasma facing components
Self organization		\Rightarrow	Sustainment without induction

NSTX ——

Strong Plasma Shaping Increases Stable β

- Strong shaping:
 - Small A = R/a ~ 1.4
 - Large κ = b/a ~ 2.0
 - Large δ = d/a ~ 0.8
- Raises edge q for fixed plasma current and toroidal field
- Higher I_p/aB_{t0}: utilization of size and applied field:
- Increased stability during fast I_p ramp up

Troyon Scaling ($\beta_{t0} = \beta_N I_p / aB_{t0}$ **) Continues to be Obeyed**

- β_{N,max} ~ 6.3, W_{MAX} ~ 390kJ
- $\beta_P \le 1.5 \Rightarrow$ first indication of diamagnetic current that lowers B_t
- Improved field axisymmetry and wall cleanliness \Rightarrow higher β

High β_N Attained With Low Pressure Peaking F_p & Internal Inductance I_i, as Suggested by Theory

Toroidal beta has reached 34% toward target of 40%

• The effects of nearby conducting wall & plasma rotation important

Evidence for Wall Stabilization Is Under Examination

- Also suggested by theory
- Strong experimental evidence from DIII-D tokamak (GA, U.S.)
- Ideal no-wall limit violated for many τ_{wall}?
- Plasma rotation stabilizing
- Subject to mode, field error, & rotation control
- Crucial to $\beta_T \rightarrow 40\%$

Expanded Plasma Parameter Space Potentially Can Also Lead to Attractive Fusion Energy Devices

Plasma S Paramete	Science of Expanded er Space	\Rightarrow	Attractive Energy Development Steps
 Solenoi 	d-free Startup	\uparrow	Simplified design, reduced operating cost
Reduce	d turbulence	\uparrow	Smaller unit size for sustained fusion burn
Stable h	nigh β _T & β ₀	\Rightarrow	Lowered magnetic field and device costs
 Strong plasma 	wave-energetic particle- interaction	⇒	Efficient fusion α particle, neutral beam, & RF heating
 Dispers 	ed plasma fluxes	\Rightarrow	Survivable plasma facing components
Self org	anization	\Rightarrow	Sustainment without induction

NSTX ——

High Harmonic Fast Wave Utilizes High ε (~100) in ST for Efficient Heating and Current Drive

HHFW (A Magnetosonic Wave at High Harmonics) Can Interact Strongly with Electrons

• $P_{HHFW} = 2.5 \text{ MW}; \mathbf{k}_{\parallel} = 14 \text{ m}^{-1}$ (heating phasing)

HHFW Also Interacts Readily with Supra-Alfvénic Neutral Beam Injected Ions

(loffe Inst, PPPL) in(flux/Energy^{1/2}) (ster⁻¹cm⁻²eV^{-3/2}s⁻¹ Data from Neutral Particle Analyzer 12 • P_{RF} = 3 MW 10 $P_{NBI} = 1.5 \text{ MW}$ at RF end 8 $T_{e}(0) = 1.0 - 0.4 \text{ keV}$ $n_{e}(0) \approx 3 \times 10^{19} m^{-3}$ 5 ms + 10 ms lons accelerated to higher multiples of + 20 ms noise floor **V**_{Alfvén} 60 120 20 40 80 100

140

Energy (keV)

NBI lons Excite Magnetosonic Oscillations, or Compressional Alfven Eigenmodes (CAE's)

- Mode identified to be Alfvénic
 - Red: B_T ramp-up
 - Blue: B_T ramp-down
- Fit CAE theory: broad spectra away from ion cyclotron frequencies
- Correlates well with increasing NBI energy - consistent with large V_{fast}/V_{Alfven} ~ 4
- Could impact ion heating and ion-electron power balance
- Important for future devices with V_α/V_{Alfven} ~ 4 or higher

Expanded Plasma Parameter Space Potentially Can Also Lead to Attractive Fusion Energy Devices

Plasma Science of Expanded Parameter Space	\Rightarrow	Attractive Energy Development Steps
 Solenoid-free Startup 	\uparrow	Simplified design, reduced operating cost
 Reduced turbulence 	\uparrow	Smaller unit size for sustained fusion burn
 Stable high β_T & β₀ 	\Rightarrow	Lowered magnetic field and device costs
 Strong wave-energetic particle- plasma interaction 	\uparrow	Efficient fusion α particle, neutral beam, & RF heating
Dispersed plasma fluxes		Survivable plasma facing components
Self organization	\Rightarrow	Sustainment without induction

NSTX ——

Emission from Gas Puff Imaging Reveals Ejected "Filaments" Leading to Large Edge Plasma Loss

Latest NSTX Results

SC3, Moscow, 6/24-29/02

Simulations Confirms Theory: Sheared Flow Reduces Fluctuations & Improves Edge Confinement

BOUT Fluid Simulation code (LLNL)

- EFIT equilibrium for 104312, at 250 ms.
- Edge: $T_i = T_e = 26 \text{ eV},$ $n_i = 2.3 \times 10^{18} \text{ m}^{-3}$
- ψ =0.9: T_i = T_e = 51 eV, n_i = 4.4×10¹⁸ m⁻³
- Driven by edge pressure gradient in bad field line curvature, but reduced by sheared flow
- Kinetic and boundary effects important
- Impacts plasma flux dispersion

Expanded Plasma Parameter Space Potentially Can Also Lead to Attractive Fusion Energy Devices

Plasma Science of Expanded Parameter Space	\Rightarrow	Attractive Energy Development Steps
 Solenoid-free Startup 	\Rightarrow	Simplified design, reduced operating cost
 Reduced turbulence 	\Rightarrow	Smaller unit size for sustained fusion burn
 Stable high β_T & β₀ 	\Rightarrow	Lowered magnetic field and device costs
 Strong wave-energetic particle- plasma interaction 	\uparrow	Efficient fusion α particle, neutral beam, & RF heating
 Dispersed plasma fluxes 	\Rightarrow	Survivable plasma facing components
Self organization	^	Sustainment without induction

NSTX ——

First Indications of HHFW-Heated Plasmas with Reduced Inductive Requirements

- Moderate plasma current
- High $\beta_p \sim 1$
- H-mode with Edge-Localized Modes
- Induction voltage reduced to <0.5 V
- Low internal inductance I_i ~ 0.9

Stronger Indications of NBI-Heated Self-Organized Plasma Nearly Sustained without Induction

- Edge turbulence largely quieted H-mode
- β_p (∝ pressure/l_p²) ~ 1.2 ⇒ high self-driven current (pressure gradient, "thermo-electric")
- Neutral beam also drives substantial current
- Inductive voltage reduced to <0.2V for > 0.4s

New NSTX Results Are Expanding the Parameter Space of Toroidal Plasma Science

- Great progress
 - Magnetic reconnection solenoid-free start-up
 - Reduced turbulence suppressed ion turbulence
 - MHD stability β_T reached 34%, exceeded no-wall limit?
 - Wave-fast ion-plasma interactions rich magnetosonic properties
 - Edge physics ejected plasma filaments imaged
 - Self-organization initial encouraging indications
- Links to astrophysics and solar plasma physics
- Strong contributions to toroidal plasma science & fusion energy development

In parallel with a burning plasma such as ITER, ST science will point the way to cost-effective and practical fusion energy

NSTX offers unique scientific research opportunities

In toroidal plasma physics