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The US ST Research is a part of the Worldwide Effort.
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Cost-Effective ST Steps in Parallel with ITER
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SCIENTIFIC CHALLENGES OF
HIGH PERFORMANCE STEADY-STATE OPERATIONS

• MHD Stability at High bT and bN : Fusion power at low
toroidal field with high bootstrap current fraction.
bT ~ 20%, bN ~ 6 for CTF
bT ≥ 40%, bN ~ 8 for Power Plants (advanced regime)

• Transport and Confinement: High performance at small size.
H98pby,2 ~ 1.4 - 1.7 with good electron confinement required.

• Power and Particle Handling: Small major radius increases
P/R by a factor of ~ 2 to 3, but much greater flux expansion
to a given field-line inclination.

• Solenoid-Free Start-Up: Elimination of solenoid required for
compact reactor design.

• Plasma Sustainment: Non-inductive sustainment of high
confinement, high beta plasmas for times >> tskin



MHD Stability at High bT and bN

Related papers: J. Menard, et at, P-3.101
  E. Fredrickson, P-3.99
  N. Gorelenkov et al., P-3.103
  E. Belova et al., P-3.102
  



High beta maintained for duration > tE

• H-mode: routine access
– broadens pressure profile

• bN = 5.5, li = 0.6
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2001

Improvements:
• Error field reduction
• Wall + rotation
• Wall conditioning

NSTX is progressing toward its beta goal of bT = 40%, bN = 8

bN ≡ 108 bT a BT / Ip

S. Sabbagh, J. Menard,
et al

bN / li= 6 limit seen

2002-2003

bN / li= 10 reached!

bN



Influence of high Vf/VA already seen in equilibria:
relevant to saturation or stabilization?

• Experiment: Density shows
in-out asymmetry

• Effect of high Mach number
of driven flow

R. Bell, LeBlanc, Menard

M3D: Park

• Experiment: kinks saturate

Stutman (JHU)

• Theory: Vf
’ ~ glin

MHD => growth affected by
high flow shear: impact on kink & ballooning?

No rotation MA = 0.2



PEGASUS

G.D. Garstka, et al., PP (2003)

A ~ 1.2

PEGASUS

PEGASUS PLANS:
• 200 kW HHFW heating
• Fast TF ramp
• Improved shaping control
• Increased OH capability
• lower A



Transport and Confinement

Related papers: B. LeBlanc, et at, P-3.98
  R. Maingi, et al., P-3.97
  M. Redi, et al., P-4.94
  D. Stutman, et al., P3.100



Global Confinement Exceeds Predictions
from Conventional Aspect Ratio Scalings

• Quasi-steady conditions
• tE,global from EFIT magnetics reconstruction

       - Includes fast ion component
• tE,thermal determined from TRANSP runs

tE,global

• Ip ≤ 1.5 MA
• ET ≤ 0.4 MJ with 12 m3

• Routine H-mode access
• bT ≤ 35%, ebp ≤ 1, bN ≤ 6
• tE ≤ 100 msec



NSTX NBI L-modes Exhibit Similar Parametric
Scaling as Conventional Aspect Ratio Devices

Accurate determination
of R/a dependence is an active
ITPA research topic

Favorable power dependence
in H-mode tE ~ P-0.50

    - Other H-mode parametric
dependencies not yet well
determined

tE
NSTX-L ~ Ip0.76 BT

0.27 PL
-0.76

S. Kaye, et al., 



 Good Ion Confinement Suggests Suppression
of Long Wavelength Turbulence

TRANSP

• ci ~ cneo and cf << ci
Ti >>Te

• ce  has an unusual profile.
Te(r) parabolic than bell shaped.

cf <<  ci £ cneo < ce
Transport behavior of NBI
heated NSTX discharges

Vrotation/VA ~0.3



Theory guides NSTX transport physics research

Microstability and turbulence
simulations are done with,
FULL, GS2*, GYRO. GTC

GS2 linear analyses shows that
• ExB shearing rate stabilizes

long l, ITG modes
• short l ETG modes not

stabilized, may dominate
transport

• Modes that are usually sub-
dominant, (tearing parity), may
play a role

Diagnostics and localized heating,
EBW, will test theory

Non-linear studies – GS2
 + global (GTC & GYRO) in future

NSTX can provide a unique
test-bed to understand
electron transport and
eventually to control it.



High-k turbulence
Tangential microwave

k^re ~ 0.1-0.3 at r/a ~ 0.4 - 0.8
Spatial resolution ~ 1 cm 
Kq resolution  ~ 0.2 - 3 cm-1

Low-k turbulence
Imaging reflectometry is

Advanced Turbulence Diagnostics Planned



Power and Particle Handling

Related paper: V.A. Soukhanovskii, et at, P-3.179



Peak heat flux increased with NBI power in
LSN and was reduced in DND relative to LSN
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#108968: DND@0.431s
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High d, DND configuration appears to provide
an attractive power handling solution.



#105710

GPI
view

Intermittent plasma objects observed
with gas puff imaging diagnostic

Gas manifold

Side-viewing re-
entrant window

H-mode

L-mode

Reflectometers and
edge (UCLA,ORNL)
reciprocating probe
also observe
intermittency(UCSD)



CDX-U

Li Wall

CDX-U is investigating liquid lithium PFCs*

• Gas requirement up x5
• Oxygen, carbon impurities virtually eliminated
• Immediate 30% increase in peak Ip, discharge duration
• Loop voltage to sustain current dropped from 2.0 fi 0.5V

 Loquid lithium filling technique developed by
UCSD - PISCES group.

Note reflections in metallic lithium
CDX-U

R. Majeski et al., JNM (2003) 



Solenoid-Free Start-Up
- Coaxial Helicity Injection
- Outer poloidal field start-up



CHI Generated Large Toroidal Current in NSTX

• Goal is to
control
discharge
evolution to
promote
relaxation
of toroidal
current into
closed flux
surfaces

NSTX: Univ. of Washington, PPPL

CHIP - LANL

•CHI requires 3-D MHD
simulation of flux closure
and reconnection

–CHIP, M3D, NIMROD



HIT-II developed a new CHI startup method

• CHI started discharges coupled to
inductive discharges saved volt-
seconds

• CHI started discharges much more
robust and less sensitive to wall
conditions

• CHI started discharges produced
record plasma currents on HIT-II
(265kA)

NSTX plans to test the CHI
assisted OH start-up
concept.

CHI + OH

OH only

R. Raman, et al., PRL (2003).



Outer Poloidal Field Coil Only Start-Up

Flux contours
20 kA

- 20 kA

2.8 kA

~ 35 cm 

In ST geometry, a qualify field null can be formed by outer
PF coils while retaining significant flux for current ramp up.

• To be tested on NSTX to ~ 300 kA.
• Physics extendable to future STs.

W. Choe, M. Ono



Non-Inductive Sustainment

Goal: 40% bT , INI = 100%, tpulse >> tskin

To be developed in NSTX



•  ebp ~ 1, INI  Fraction
= 60%

• bN = 5.8 > no-wall
stability limit

•    bN H89p ~ 15 at bT =
15% sustained over
t-skin

• ~ parameters
needed for CTF

• Density still
evolving; need
particle control

      tskin

High Fraction of Non-Inductive Currents
Achieved in Long-Pulse High bpol Discharges



Stability theory and data motivate shaping enhancements

bN

bT

(%)

2003  data
2002  data
2001 data

k = 2, d = 0.8

Proposed path to bT=40%, bN=8 (100% jNI)

k = 2.4, d = 0.8?



NSTX Active Feedback Control Coils
To Help Achieve ~ Ideal MHD Limits

6.4 kHz

n = 1
6.4 kHz

Detailed kinetic diagnostics are now available

Valen code. J. Bialek, S. Sabbagh, Columbia U



High Harmonic Fast Wave Provides Heating and Current Drive
in High Dielectric e ~ 50 ST Plasmas

• Differences in Vloop with co and
counter-directed waves indicate ~
100 kA of current drive consistent
with theoretical modeling

                P.M. Ryan et al., NF(2003)

HHFW current drive demonstrated

• Primary HHFW damping
mechanism

• Observed over wide range in
wave phase velocity

• Electron ITB created

Electron heating demonstrated

•   Heating observed over wide range
in wave phase velocity

• Evidence for electron ITB found

Electron heating demonstrated

HHFW + NBI interaction investigated. S. Medley et al., P-3.96



Radial Location of EBW CD is Highly Localized and
Can be Varied by Changing Launched n//

-10

CDX-U

       with 
local limiter

w/o limiter

Exp:B. Jones et al, PRL (2003)
Theory: A.K. Ram et a. PoP(2002)

• Positive current results from Ohkawa CD;
efficiency increases with r/a
• Normalized CD efficiency, zec = 0.4,
compares favorably to ECCD
• Plan ~ 4 MW EBW to get  > 100 kA
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40% bT , INI = 100%, tpulse >> tskin within reach
using the additional tools that are planned

• Enhanced shaping improves
ballooning stability

• Near with-wall limit => likely
that mode control + rotation are
key

• Particle control required to
maintain moderate ne for CD

• EBW provides off-axis CD to
keep q ~  2 & stabilize NTMs

• NBI CD, bootstrap current
significant part of the total

• HHFW heating contributes to
bootstrap, raises Te

TSC Simulation, C. Kessel, et al., 



ST RESEARCH IS MAKING RAPID PROGRESS

• MHD Stability at high bT and bN

- 35% bT achieved on NSTX.
- PEGASUS is producing 20% beta with just OH at low A~ 1.2.
– Simultaneous high k and d should allow bT ~ 45% with RWM stabilization

• Good confinement behavior H98pby,2 ~ 1.4 at high beta
- Neo-classical ci correlates with plasma rotation (sheared flow stabilization).
- Very low cf led to Vrotation ~ 0.3 VA
- Diagnostics for high and low k fluctuations planned – turn on and off low-k?

• Power and Particle Handling:
- High d ~0. 8 configuration shows a large reduction in peak heat flux.
- CDX-U has successfully tested liquid lithium limiter. Aggressive plans for NSTX.

• Two Approaches being pursued for Solenoid-Free Start-Up
- Coaxial helicity injection is pursued on NSTX with HIT-II collaboration
- Outer-poloidal field coil start-up research is initiated.

• Plans are in place to Sustain High Performance Plasmas
- bN H89p = 15 at bT = 15% sustained for tskin exceeded no-wall limits. 
- 4 MW 15 GHz EBW should provide flexible off-axis current drive
- 40% bT should be sustainable fully non-inductively
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Thanks to the NSTX, CDX-U, HIT-II, PEGASUS and Theory Teams



40% bT , INI = 100%, tpulse >> tskin within reach
using the additional tools that are planned

• Enhanced shaping improves MHD stability
- PF 1a modification to allow high k ≤ 2.4 and high d ≤ 0.8

• Near with-wall limit => mode control + rotation 
- Active feedback coils to be installed

• Particle control required to maintain moderate ne for CD
- Divertor lithium wall coating and cryo-pump planned

• 7 MW NBI CD, bootstrap current significant part of the total

• 6 MW HHFW heating contributes to bootstrap, raises Te

• EBW provides off-axis CD to keep q ~  2 & stabilize NTMs
- 4 MW 15 GHz EBW system planned


