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NSTX Contributions to ITPA Steady-State
Operation and Energetic Particles

• High power heating and current drive systems for R ~ 1 m:
- 7 MW NBI system operational
- 6 MW HHFW (ICRF) system operational
- 4 MW EBW system planned (Off-axis CD and NTM stabilization)

• Physics regimes of interest:
- Physics of steady-state operation: t-pulse >> t-skin
- Already exploring VFast >> VAlfven regimes (Fishbone, TAE, CAE, etc.)
- Contribute to A, b, k, d physics data base

• Advanced toroidal physics explored
- Above “no-wall” limit plasma already accessed
- Active feedback coils to be installed

• Power and particle control systems
- Divertor lithium wall coating and cryo-pump planned

Modern plasma diagnostic and real time control systems 



•  ebp ~ 1, INI  Fraction
= 60%

• bN = 5.8 > no-wall
stability limit

•    bN H89p ~ 15 at bT =
15% sustained over
t-skin, constant li

• However, density
still evolving; need
particle control

      tskin

High Fraction of Non-Inductive Currents
Achieved in Long-Pulse High bpol Discharges



NSTX Integrated Scenario Modeling 
For Steady-State Operations



NSTX Utilizes Advanced Tokamak Physics
to Achieve Steady-State Operations

TSC Simulation, C. Kessel, et al.,
40% bT , INI = 100%, tpulse >> tskin

• Enhanced shaping improves
ballooning stability

• Near with-wall limit => likely
that mode control + rotation are
key

• Particle control required to
maintain moderate ne for CD

• EBW provides off-axis CD to
keep q ~  2 & stabilize NTMs

• NBI CD, bootstrap current
significant part of the total

• HHFW heating contributes to
bootstrap, raises Te



Steady-State Operation Requires Integration &
Control Built on Diagnostics and Actuators
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Stability theory and data motivate shaping enhancements

bN

bT

(%)

2003  data
2002  data
2001 data

k = 2, d = 0.8

Proposed path to bT=40%, bN=8 (100% jNI)

k = 2.4, d = 0.8?



Peak heat flux increased with NBI power in
LSN and was reduced in DND relative to LSN
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High d, DND configuration appears to provide
an attractive power handling solution.



Divertor Cryo-Pump Can Provide
Needed Density Control

2. Shield on inner divertor
• Suitable for d ~ 0.8
• Installation on center stack
• Relatively inexpensive

Repositioned
Secondary

Passive
Stabilizer

Cryo-pump

1. Behind secondary plates
• Suitable for d ≤ 0.5
• Requires plate relocation



Liquid Lithium Surface Module Will
Address Important Reactor Issues

• Development under aegis of ALIST group of VLT
• A potential solution for both power and particle

handling
– Tantalizing possibilities for advanced regimes
– Liquid Li tray in CDX-U dramatically reduced recycling

• Modules ~1m2 close to
plasma

• Flow liquid Li at 7 – 12
m/s to avoid evaporation
at full power

• Installation in FY’08



NSTX Active Feedback Control Coils
To Help Achieve ~ Ideal MHD Limits

6.4 kHz

n = 1
6.4 kHz

Detailed kinetic diagnostics are now available

Valen code. J. Bialek, S. Sabbagh, Columbia U



LARGE Te INCREASE

Some HHFW-Heated Discharges Exhibit
Internal Transport Barrier Behavior

• Te increases strongly
  inside half radius
• Density profile doesn’t
  show change

• Ti (0) rises with Te(0)
•  ce progressively
   decreases with time
   in the central region
• DTe (r) Æ jbt Æ Rev. shear
Æ Te ITB generated

Prf = 2.5 MW,   Ip = 800 kA
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If electron ITB location can be controlled, it will greatly
enhance our ability to sustain advanced plasmas.



Less Loop Voltage to Maintain IP With Co Phasing;
Magnetics Analysis Estimates Icd = 110 kA (0.05 A/W)

• TORIC Icd = 95 kA (0.05 A/W)
• CURRAY Icd = 162 kA (0.08 A/W)
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Placing EBW Launcher Well Above or Below Midplane
Produces Large n// Shifts Needed for Efficient EBWCD

15 GHz RF launched at 65o above mid-plane, with 0.5 < n//  < 0.7 
into b = 30% NSTX equilibrium
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EBWCD could provide efficient off-axis current
drive through “Ohkawa” CD

1 MW of 15 GHz RF launched at 65o above mid-
plane, into b = 30% NSTX equilibrium

CQL3D
R. Harvey, CompX

• EBW heats barely
passing electrons into
trapped region resulting
in “CD”.

• Plan ~ 4 MW at RF
  source power to get
  > 100 kA ; efficiency
  increases with r/a

• Normalized CD
  efficiency, zec = 0.4,
  compares favorably to
  ECCD
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• n > 1 modes interpreted to be TAE
– n = 1 as “bounce” fishbones

• Transport of core fast ions by n=2 mode
– Fast ions then destabilize n=1, ions lost

Energetic Particles
NSTX Accesses vFast > vAlfvén Physics
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NSTX’s contribution to ITPA steady-state and
energetic particles

• NSTX facility is a good test bed for steady-state advanced operations
- High heating and CD power systems (11 MW at ~ 1 m)
- Wide physics parameters accessible
- Modern control and diagnostic systems

• High performance plasma was sustained for t-pulse > t-skin
- ebp ~ 1, INI  Fraction = 60%
- bN = 5.8 > no-wall stability limit
- bN H89p ~ 15 at bT = 15% sustained over t-skin, constant

• Integrated scenario modeling shows a promise for t-pulse >> t-skin operation
- TSC simulation together with other specialized codes used with NSTX data

• Tools are being implemented and planned to support advanced operations
- Inner poloidal field modification to allow high k and d operations
- Divertor pumps to control heat and particles
- RWM coils to control MHDs
- 4 MW EBW to control j(r) and NTMs

• NSTX is also exploring relevant energetic particle regime of vFast > vAlfvén 
- Various modes (fishbone, TAE, CAE, etc.) identified


