Supported by

# Highlights (and Challenges) on Steady State Operations in NSTX

#### Masayuki Ono Princeton University, USA

#### For the NSTX National Team

Steady State Operation and Energetic Particles ITPA 2003, St. Petersburg, Russia, July 15-16, 2003

Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** NYU ORNL PPPL **PSI** SNL **UC Davis** UC Irvine **UCLA** UCSD **U** Maryland **U New Mexico U** Rochester **U** Washington **U Wisconsin** Culham Sci Ctr Hiroshima U HIST Kyushu Tokai U Niigata U Tsukuba U **U** Tokyo loffe Inst TRINITI **KBSI** KAIST ENEA. Frascati CEA. Cadarache **IPP.** Garching **IPP, Jülich** U Quebec

# NSTX Contributions to ITPA Steady-State Operation and Energetic Particles

O NSTX

- High power heating and current drive systems for R ~ 1 m:
  - 7 MW NBI system operational
  - 6 MW HHFW (ICRF) system operational
  - 4 MW EBW system planned (Off-axis CD and NTM stabilization)
- Physics regimes of interest:
  - Physics of steady-state operation:  $\tau$ -pulse >>  $\tau$ -skin
  - Already exploring V<sub>Fast</sub> >> V<sub>Alfven</sub> regimes (Fishbone, TAE, CAE, etc.)
  - Contribute to A,  $\beta, \kappa, \delta$  physics data base
- Advanced toroidal physics explored
  - Above "no-wall" limit plasma already accessed
  - Active feedback coils to be installed
- Power and particle control systems
  - Divertor lithium wall coating and cryo-pump planned

Modern plasma diagnostic and real time control systems

# High Fraction of Non-Inductive Currents Achieved in Long-Pulse High $\beta_{pol}$ Discharges



- $\epsilon \beta_p \sim 1, I_{NI}$  Fraction = 60%
- $\beta_N = 5.8 > no-wall$ stability limit
- $\beta_N H_{89p} \sim 15$  at  $\beta_T = 15\%$  sustained over  $\tau$ -skin, constant  $I_i$
- However, density still evolving; need particle control

### NSTX Integrated Scenario Modeling For Steady-State Operations



### NSTX Utilizes Advanced Tokamak Physics to Achieve Steady-State Operations





TSC Simulation, C. Kessel, et al., 40%  $\beta_T$ ,  $I_{NI} = 100\%$ ,  $\tau_{pulse} >> \tau_{skin}$ 

- *Enhanced shaping* improves ballooning stability
- Near with-wall limit => likely that mode control + rotation are key
- Particle control required to maintain moderate n<sub>e</sub> for CD
- EBW provides off-axis CD to keep q ~ 2 & stabilize NTMs
- NBI CD, bootstrap current significant part of the total
- HHFW heating contributes to bootstrap, raises T<sub>e</sub>

# Steady-State Operation Requires Integration & Control Built on Diagnostics and Actuators



#### Stability theory and data motivate shaping enhancements



# Peak heat flux increased with NBI power in LSN and was reduced in DND relative to LSN



# Divertor Cryo-Pump Can Provide Needed Density Control

- **1. Behind secondary plates**
- Suitable for  $\delta \le 0.5$
- Requires plate relocation

#### 2. Shield on inner divertor

- Suitable for  $\delta \sim 0.8$
- Installation on center stack
- Relatively inexpensive



Liquid Lithium Surface Module Will Address Important Reactor Issues

- Development under aegis of ALIST group of VLT
- A potential solution for *both* power and particle handling
  - Tantalizing possibilities for advanced regimes
  - Liquid Li tray in CDX-U dramatically reduced recycling



- Modules ~1m<sup>2</sup> close to plasma
- Flow liquid Li at 7 12 m/s to avoid evaporation at full power
- Installation in FY'08

# NSTX Active Feedback Control Coils To Help Achieve ~ Ideal MHD Limits





# Some HHFW-Heated Discharges Exhibit Internal Transport Barrier Behavior



- T<sub>e</sub> increases strongly inside half radius
- Density profile doesn't show change
- $T_i(0)$  rises with  $T_e(0)$
- $\chi_e$  progressively decreases with time in the central region
- $\Delta T_e(r) \rightarrow j_{bt} \rightarrow Rev.$  shear  $\rightarrow T_e ITB$  generated

If electron ITB location can be controlled, it will greatly enhance our ability to sustain advanced plasmas.

## Less Loop Voltage to Maintain $I_P$ With Co Phasing; Magnetics Analysis Estimates $I_{cd} = 110$ kA (0.05 A/W)



- Plasmas matched for central T<sub>e</sub>
   Higher heating efficiency for
   Counter-CD found
   q(r) dependence
   on χ<sub>e</sub>?
- q(r) diagnostics
- being implemented

- TORIC I<sub>cd</sub> = 95 kA (0.05 A/W)
- CURRAY I<sub>cd</sub> = 162 kA (0.08 A/W)

#### Placing EBW Launcher Well Above or Below Midplane Produces Large n, Shifts Needed for Efficient EBWCD



15 GHz RF launched at 65° above mid-plane, with 0.5 <  $n_{//}$  < 0.7 into  $\beta$  = 30% NSTX equilibrium

## EBWCD could provide efficient off-axis current drive through "Ohkawa" CD



1 MW of 15 GHz RF launched at 65° above midplane, into  $\beta$  = 30% NSTX equilibrium • EBW heats barely passing electrons into trapped region resulting in "CD".

- r/a Plan ~ 4 MW at RF
  source power to get
  > 100 kA ; efficiency
  increases with r/a
  - Normalized CD efficiency,  $\zeta_{ec} = 0.4$ , compares favorably to ECCD

# Energetic Particles NSTX Accesses v<sub>Fast</sub> > v<sub>Alfvén</sub> Physics



- n > 1 modes interpreted to be IAE
  - n = 1 as "bounce" fishbones
- Transport of core fast ions by n=2 mode
  - Fast ions then destabilize *n*=1, ions lost

NSTX/DIII-D Similarity Experiment Finds TAE Mode Number Scales as Expected



## NSTX's contribution to ITPA steady-state and energetic particles

Spherical Torus

- NSTX facility is a good test bed for steady-state advanced operations
  - High heating and CD power systems (11 MW at  $\sim$  1 m)
  - Wide physics parameters accessible
  - Modern control and diagnostic systems
- High performance plasma was sustained for  $\tau$ -pulse >  $\tau$ -skin
  - $\epsilon\beta_p\sim 1,\,I_{NI}\,$  Fraction = 60%
  - $\beta_N = 5.8 >$  no-wall stability limit
  - $\beta_{\text{N}}$  H\_{\text{89p}} ~ 15 at  $\beta_{\text{T}}$  = 15% sustained over  $\tau\text{-skin},$  constant
- Integrated scenario modeling shows a promise for  $\tau$ -pulse >>  $\tau$ -skin operation
  - TSC simulation together with other specialized codes used with NSTX data
- Tools are being implemented and planned to support advanced operations
  - Inner poloidal field modification to allow high  $\kappa$  and  $\delta$  operations
  - Divertor pumps to control heat and particles
  - RWM coils to control MHDs
  - 4 MW EBW to control j(r) and NTMs
- NSTX is also exploring relevant energetic particle regime of v<sub>Fast</sub> > v<sub>Alfvén</sub>
  - Various modes (fishbone, TAE, CAE, etc.) identified