

#### Real-time equilibrium reconstruction and isoflux control of plasma shape and position in the National Spherical Torus Experiment (NSTX)\*

Presented at the

31st EPS Conference on Controlled Fusion and Plasma Physics

London, UK

June 28 - July 2, 2004

Dennis Mueller<sup>1</sup>, D. A. Gates<sup>1</sup>, J.E. Menard, J.R. Ferron<sup>2</sup>, S.A. Sabbagh<sup>3</sup>

 Princeton Plasma Physics Laboratory, P. O. Box 451, Princeton, NJ 08543, U.S.A.
 General Atomics, General Atomics Ct., San Diego, CA 92186, U.S.A

3. Columbia University, New York, NY 10027, U.S.A.

\* Work supported at PPPL under U.S. DOE Contract DE-AC02-76CH03073





# Control system goals **NSTX**-

- Maintain plasma parameters in steady state
- Support physics experiments, tool for control of
  - Plasma current
  - Plasma position
  - Plasma shape



Plasma Control System (PCS) NSTX-

#### is a Flexible Software Infrastructure



#### Categories correspond to controllable parameters

- Toroidal field
- $I_p$  current profile
- Poloidal field (shape and position)
- Plasma fuelling (bulk and impurities)
- Power (NBI and RF)
- Momentum input....

#### Each category can have several phases

- User defined (can be varied shot to shot)
- Each phase has one (real-time) algorithm (but an algorithm can be used in several phases)
- Can have alternate phase sequences (handles faults)



### Shape control

- 3 stage shape control development plan now complete
  - coil current control (1999)
  - Ip and position control preprogrammed shape control (2000 - 2002)
  - rtEFIT/isoflux shape control (2003 2004)
- rtEFIT/isoflux control now functional and has been used successfully for several XPs

#### rtEFIT/isoflux control

- Real-time analysis on 8 333MHz G4 processors
  - Data acquisition at 5 kHz
    - 65 magnetic data inputs,
    - 11 coil currents,
    - 9 loop voltages (⇒ vessel eddy currents)
  - Reconstruction every 12ms (slow loop)
  - Currents calculated on grid every 0.4ms (fast loop)
- Control boundary at up to 7 points using all PF coil currents



# Isoflux control algorithm

- Calculate error between reference flux and flux at control point
- Use these errors to determine coil voltages (errors related to voltages by PID matrix)

- $V_i = PID(M_{ij}\Delta\psi_j)$ Dynamic shape variations possible by allowing control points to move along control "segments"
- Segments defined by user (can be changed shot-to shot)



**X** X=



### Elongation ( $\kappa$ ) control

- High l<sub>i</sub> (~1.5)doublenull RF heated plasma
- κ was increased by increasing the requested height of the X-points after 0.2 s from shot-to-shot





# Control of drsep

(the separation at the outboard midplane between the flux surfaces on which the X-points lie)

- Control of drsep is achieved by adjusting the control point for PF3L (for positive drsep) to be further inside the plasma than for drsep = 0 and by using a symmetry term to control the fluxes at the two control locations at the outer midplane
- The X-point references are unchanged, but the actual location of the lower X-point moves.





### Isoflux control examples

- XP 418 (MAST/NSTX H-mode comparison) used isoflux control to vary drsep
- Also required specified ramp up shape evolution and current ramp to match MAST scenario





# Gap control good to ~1cm

- Data taken during shots with large transient disturbances
- Handoff

   algorithm has
   reduced initial
   perturbation





## **Known Issues**

- During rapid current ramp rtEFIT sometimes jumps from one solution to another in the slow loop
  - Speeding up calculation should help
  - Improved vessel model may help





#### Control latency reduction

- Latency is the time from a change in an input signal until the system makes a response
- Identified system latency as primary source of vertical stabilization limits
- Systematically identified latencies and removed them
- Latency now ~1/4 value in 2003
- Also added analog vertical voltage difference measurement



# Increased operating space

- Maximum κ ~
  2.4 (fills vessel)
- Has already led to improved results
  - higher  $\beta_t$
  - higher  $\beta_p$
  - Longest pulse at 1MA - 1second
- Higher κ only recently achieved - more to come



NSTX=

#### Pulse length extended at high performance

- First truly successful long pulse run this year
- Confinement degraded relative to peak performance
- All new long pulse data above  $\kappa = 2.2$



<u>|</u>'X=



#### Summary

- PCS is a useful flexible tool
- rtEFIT/isoflux control works well
- Latency reduction successful has led to a significant increase in accessible parameter space



Shot= 112487, time= 529ms





# Vertical position control

- High performance associated with strong shaping
- 2002-2003 operating  $_{2.0}$ range limited to  $\kappa$   $_{1.0}$ <2.1 in steady state  $_{1.0}$



#### **Real Time Processes**



#### Data Acquisition and Conversion

| ACQ | Acquires real-time data, converts to meaningful physical quantities (fluxes fields currents pressures flow rates) and |
|-----|-----------------------------------------------------------------------------------------------------------------------|
|     | distributes data to other real-time processes                                                                         |

#### Plasma Control System

| Category |                                                                                                     |
|----------|-----------------------------------------------------------------------------------------------------|
| Ip/OH    | Controls OH current (pre/post shot) or Ip (during shot)                                             |
| TF       | Controls Toroidal field current                                                                     |
| GIS      | Controls gas flow either pre-programmed neutral pressure feedback (prefill) or ne feedback {future} |
| Shape    | Controls PF coil currents (pre/post shot) plasma shape with flux projection (current ramp up/down)  |
| Equil    | Calculates plasma boundary flux by inverting Grad-Shafranov equation                                |
| Isoflux  | Controls PF coil currents during flat-top                                                           |
| System   | Controls whether PF control comes from Isoflux or Shape category                                    |

#### <u>P</u>ower <u>Supply Real-Time Control</u>

| psrtc | Chooses source of power supply control data (enables engineering    |
|-------|---------------------------------------------------------------------|
|       | test shots and plasma control shots). Converts requested voltage    |
|       | to thyristor firing angle (pulse width modulation). Enables bipolar |
|       | power supply operation.                                             |