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Outline A ator
! (CMod NSTY =—
To investigate turbulent microinstabilities in NSTX H-mode plasmas
exhibiting unusual plasma transport
Can we understand and control confinement?
- remarkably good ion confinement and resilient Te profiles on NSTX

NSTX - MHD quiescent H-mode with resilient T, profiles
- Linear calculations
of ITG/TEM, ETG, long wavelength microtearing modes
- ITG stability appears consistent with low y; as inferred by TRANSP,
depends on wg,g shear stabilization:
- ETG near edge and microtearing instabilities in plasma core
appear consistent with high
Nonlinear calculations have begun

Microstability basis of transport differs in ST and tokamak
- New interpretation depends on monotonic q profiles, not yet measured.



NSTX: NBI in MHD Quiescent Discharge:
T.> T, Resilient Te Profiles
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NSTX H-mode: Te(r) Resiliency

During H-mode
T,(r) remains resilient
electron density increases
ion temperature decreases _

Ke

What clamps
Electron temperature profile?

Examine microinstability
Growth rates at 3 zones

q profile: fit to external magnetic data
Need MSE measurement

5] g profile from
4 magnetic diffusion
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Little Change in Core Transport
Going From L- to H-Phase
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Microtearing Mode Exhibits
Symmetric A_par

NSTX ——
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Convergence tests

Eigenfunctions of electrostatic
and electromagnetic fields
for 0.6 sec and r/a= 0.25
atk p=0.5

Seventeen 2r extent

of field line length needed
to confine eigenfunctions

Corresponds to a very large
radial width in the

simplest approximation
width of A,=A8 ~1radian

Resonant trapped particle instability
at each field period
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Broad spectrum of unstable modes

4
2x10 Hz  2)

What causes
high electron diffusivity?

ITG range
0.65r/a t=0.6sec

Plasma core:

Find only long wavelength : _
microstabilities: 0 kp. 04 08
neither ITG nor ETG,

exhibit tearing parity, >
rotate in electron drift direction 1o

ITG range 0.25r/a t=0.6sec

TEM range
0.65r/a t=0.6sec

At 0.65r/a modes extend 1_
To smaller wavelengths than
At 0.25r/a




Connor Condition Satisfied for
Linear Instabilities

Connor, Cowley, Hastie (1990) examined linear instability conditions
for tokamak microtearing mode in the intermediate collisionality regime
For n,m=*, instability occurs onI if 9. T.>0 T Dispersion relation:
)/ _ A A a)*e
(a)ze) Cl )Lfn)\' * C2 a)*e C4 V
Broad spectrum: weak, well converged modes W|th tearlng parity
k,p=0.1to 0.8 at r/a =0.25 at 0.6 sec and
k,p=0.1to 1.0 at r/a=0.65 at both 0.4 sec and 0.6 sec.

Well converged, unstable modes with mixed parity
at higher wavevectors, up to k,p,<2-3 at r/a =0.65 at 0.4 and 0.6 sec.

At 0.4 sec, unstable growth rates at r/a =0.25 are smaller

and the modes, aside from k,p,=0.1, do not have tearing parity.
Connor condition is satisfied in NSTX core,

except r/a =0.25 at 0.4 sec, where no tearing parity mode was found.




What is the radial width of the
microtearing mode?

e Corresponds to a very large radial width in the
simplest approximation

* Width of A,=A6 ~1radian. Estimate <k,>=<k >-rq'/q-A6.
With <k,> = 0.5/p, rq'/q = 0.15, A6 = 1.2 radians,
Then Ax=2a/<k, >=84p.~84p..

e Near the plasma core p, = 0.017 m,
leading to the radial width of the tearing mode:
Aliegring™1-4 m > a.,=1.2 m, the plasma minor radius.
* More detailed calculations are needed
to properly answer this question.



Microtearinag Instability at 0.65r/a: effect on NSTX transport?

NSTX —
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NSTX: Examine ITG and ETG Microstability

Find: tearing parity eigenfunction, with broad wave vector spectrum y(k, p;)
ITG instabilities. with symmetric eiaenfunctions and parabolic v(k.p:)
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NSTX ITG Near Marginal Stability at 0.8r/a

With 25% error bars on shearing rate, ITG possibly stable with
2-3yTG > @, g Criterion
What should be the criterion for ITG stability?

Dimits (PoP 2001) requires 4y'7%> wg, g
Nonlinear Calculations including ExB shear would resolve this

NSTX 108730
t=0.4 sec, r/a=0.8

ITG-TEM
Critical
value

Measured
value

Maximum
growth rate
(units of cs/a)

ExB Shearing Rate

Real frequency
of fastest growing mode

kperp rho-i of
fastest growing mode
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N
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NSTX 108730
t=0.6 sec, r/a=0.8
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NSTX: ETG Instrinsically above Marginal Stability

At Plasma Edge: wg,g < 2¢'T¢

Fastest Growing ETG Drift Mode Wavelengths
and Growth Rates Decrease as a(VT,)/T, is Reduced

Higher Critical Gradient for ETG than TEM, Similar to ITG
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Nonlinear Simulations

e Nonlinear simulations are in progress on
NERSC’s IBM SP RS/6000 supercomputer,
using 336 processers on 42 nodes, with 4MB memory
per processor and GS2 compiled for 64 bit addressing
e Computational domain: 758 million meshpoints
in a rectangular box (at the outside plasma midplane)
with 15 p In the x direction and 63 p in the y direction.
e Nonlinear terms evaluated on a grid with
243 points in x and 27 points in y
for 9 k, modes < 0, 161 k, modes, after dealiasing.
e Generalize rule for determining the number of k, modes:
N,=(2rrq'/q)*N,(L,/L,)*(N,-1)/2
when more than one field period for necessary
eigenfunction connections. N ,=number of 2x field periods



Conclusions

If 2-3y,,,< wg,g Stabilizes ITG, ITG may be stable everywhere.

NSTX ——

NSTX: Good ion confinement correlated with ITG stability

Poor electron confinement: core utearing, edge ETG
Resilient Te profiles: likely due to unchanged
utearing, ETG core driving forces (aVN./N,, aVT/T,)

wg,g SUuppression of ETG and microtearing modes not yet known

Need MSE for q profile data. Nonlinear simulations in progress.

t=0.4/0.6s Xi Ke ITG,utearing ETG

r/a=0.25 <X* | >>y; | Stable ITG, stable
unstable utearing

r/a=0.65 < X" >> %, | Likely stable ITG, unstable unstable/
utearing stable
ExB effect unknown on utearing

r/a=0.80 < X" >> %, | likely stable ITG unstable

Does ExB shear suppress microtearing instability?




