## Potential EPS 06 Invited Talk on RWM Research

- World-leading advances in RWM physics analysis ongoing
  - Plasma rotation control
    - n=1,3 applied fields enabled new analysis; generated ITER relevant target
  - Critical rotation frequency
    - Higher order rational surfaces not required for stabilization
    - DIII-D similarity experiment supports  $\Omega_c/\omega_A \sim \epsilon/q^2$  (Reimerdes APS invited)
  - □ Plasma rotation damping (with applied n=1 and n=3 fields)
    - Details of NTV scaling shown by experiment (n<sup>2</sup>; role of resonant surfaces)
    - Damping evolution from "vacuum field" to RFA to full RWM shown to follow NTV theory
  - Resonant field amplification
    - Clear phase shift based on applied frequency
    - Single mode model may not explain data analysis being done now
  - RWM dynamics
    - Evolution of field amplification and RWM, tearing modes triggering, etc.
  - Potential for initial active RWM stabilization experiments
- Intend to submit abstract for IAEA 06 as well
  NSTX

## Plasma rotation on higher order rational surfaces is not required for RWM stability



- n=3 applied field used to alter plasma rotation profile
- Critical rotation *profile*, rather than just a scalar value
  - Investigate dependence on plasma parameters



- Without applied damping field
  - □  $\Omega_c / \omega_A \sim 1/(4q^2)$  reasonable critical profile for 2004 data
- With applied damping field
  - RWM stable with nearly zero rotation at q > 2.5

## A. Sontag