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Abstract
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Summary
 Low field side (LFS) supersonic gas injector (SGI) has been used for

fueling of ohmic and 2-6 MW NBI-heated L- and H-mode plasmas

 SGI-fueled H-mode power threshold low (< 2 MW NBI), H-mode access
reliable

 Developed H-mode scenario with SGI fueling and reduced (nine-fold)
high field side (HFS) fueling demonstrating the possibility of density
control

 SGI-fueled double-null H-mode plasmas demonstrate different ELM
regime (type III ELMs vs small and type I ELMs with HFS fueling)

 SGI injects deuterium at Γ < 5 x 1021 particles/s in quantities 0.1 - 0.3
of NSTX plasma inventory in a multi-pulse, continuous fashion with
measured fueling efficiency 0.1 - 0.3

Visit NSTX SGI homepage at  nstx.pppl.gov/sgi
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 Improve and optimize gas fueling
• ITER will rely on central fueling (pellet, compact toroid),

however plasma start-up and edge fueling will use gas
puffing

 Supersonic gas injector installed on NSTX in 2004, experiments
conducted in ohmic and NBI H-mode plasmas in 2005-2006

 Supersonic gas jet fueling was studied on other facilities
• limiter tokamaks (HL-1M, Tore Supra): injected 0.2-0.9 of total

plasma inventory in several ms, perturbative, fueling efficiency
0.3-0.6

• divertor tokamak (AUG), divertor stellarator (W7-AS): similar gas
jet parameters, but fueling efficiency ~ 0.1-0.3

Supersonic gas jet is a unique fueling technique
studied on NSTX
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Outline of poster

 Supersonic gas injector and diagnostic
package commissioned on NSTX

 Demonstrated possibility of H-mode fueling
and substantial HFS fueling reduction

 Studied fueling efficiency and penetration
• Fueling efficiency is a function of SGI
plenum pressure and distance to plasma

• Present setup does not appear to enable
gas jet penetration - need to increase gas
jet pressure

Supersonic gas jet fueling yields promising initial
results on NSTX
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Supersonic gas jet penetration mechanism

 

 Supersonic gas jet is a low divergence high pressure, high density gas stream
 Velocity distribution function is drifting narrowed Maxwellian with udrift = uflow

uflow = M c = M √  γ kT/m > vtherm

 SOL/edge electrons with low Te do not fully penetrate gas jet, gas jet retains
neutral (molecular-atomic) -ion structure, eventually ionizes and creates a
plasmoid

 High density plasmoid blocks jet from deep penetration into magnetized plasma
 Depth of penetration is determined by jet

pressure (density) and plasma kinetic and
magnetic pressure

 Single particle ionization / charge exchange
penetration model is inapplicable

 Modeling must include continuity, momentum,
energy balance (Braginskii) equations
with detailed reaction rates and neutral
transport Gas jet

neutral 
density

Plasmoid
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SGI on NSTX: placement and control elements
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SGI head is a densely packed apparatus

 

• Shroud: CFC and ATJ graphite
• Gas valve: Veeco PV-10 piezoelectric

type, dthroat=0.02”, typical opening time
1-2 ms, driving voltage 150 V

• Thermocouples in shroud and in gas
valve

• Two magnetic pick-up coils on shroud
front surface for Bz, Bt  measurements

• Three magnetic pick-up coils in shielded
box inside shroud for Bz , Br  and
magnetic fluctuations measurement

• Langmuir probe: flush-mounted design,
dtip= 1.75 mm, I-V recorded at 5 kHz,
 -50 < V < 50

• Nozzle: True Laval geometry, L = 23.4
mm, dthroat = 0.01”
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SGI parameters characterized off-line and in situ

 

• NSTX SGI is operated at 45-60 Torr l /s (~ (3.2 - 5) x 1021 mol/s)

• Jet divergence half-angle: 6o - 25o

• Hydrogen / Deuterium: M = 4, T ~ 60 - 160 K, ρ < 5 x 1017 cm-3,
Re = 6000, vtherm ~ 1100 m/s, vflow = 2400 m/s

x 1021



V. A. Soukhanovskii, EPS 2006, Rome, Italy, 23 June 2006
10 of 18

SGI-fueled H-mode plasmas demonstrate different
properties (low power threshold, type III ELMs)

 Purpose of SGI fueling H-mode experiments: eliminate uncontrolled density
rise observed in HFS-fueled H-mode plasmas

  H-mode power threshold is low with LFS SGI fueling (high with LFS gas)
  With SGI fueling - transition from type I to type III ELMs in Double Null
  H-mode references: R. Maingi et al. PPCF 46 (2004) A305, NF 43 (2003) 969
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SGI H-mode fueling efficiency 0.1-0.3
 Example of 2-3 MW NBI

HFS and SGI fueled LSN
H-mode plasmas

 Density approaching
Greenwald scaling limit

 SGI turns on at 0.180 s
 Supersonic gas jet does not

perturb plasma edge

 (a) Ip, PNBI, ne
 (b) Gas injection rates, Dα
 (c) Electron inventory Ne,

fueling efficiency
 (d) SGI thermocouples,

Langmuir probe Isat
 (e) and (f) - various SGI

magnetic field and magnetic
fluctuation sensors
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In H-mode plasmas supersonic gas jet deposits
particles in SOL and edge

 Supersonic gas jet does not penetrate further than 1-4 cm from
separatrix

 Density rise is often seen in H-mode density profile “ears”
 Often “ears” width increases
 Te profiles indicate pedestal and core reduction by up to 10-15 %

H-mode
density “ears”
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HFS fueling can be replaced by SGI fueling without
H-mode density reduction

 Shown three discharges
with full HFS fueling,
reduced HFS fueling and
SGI, and SGI fueling only

 Note ELM regime change
from small and type I to
type III in SGI-fueled
plasmas

 Total gas input is greater
with SGI fueling

 HFS fueling reduced by x 9

 Experiment was run when
multi-pulse SGI capability
was not yet available
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Fueling efficiency is a function of SGI plenum
pressure and distance to plasma

 Experiments in ohmic plasmas were conducted at reduced ΓSGI=2.8 x 1021 s-1

 Calculated instantaneous fuelling efficiency (dNe/dt) * ΓSGI, then averaged
over ΓSGI

 Plasma density and fueling efficiency is a weak function of SGI-separatrix
distance

 Need to run SGI at highest plenum pressure (presently 2500 Torr) and as
close as possible to plasma
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Fueling efficiency higher in inner-wall limited
plasmas

 Example of NBI-heated
inner wall limited L-mode
plasma

 Pulsed SGI fueling

 Fueling efficiency 0.1 - 0.4

 Result important for using
SGI during start-up when
plasma is limited

 Instantaneous fueling
efficiency is calculated
using plasma volume Vol(t)
and dne/dt from FIReTIP
interferometer

 SGI at Γ~4.2 x 1021 s-1
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Supersonic gas jet does not perturb plasma edge

 Used Canadian Photonic camera with 0.5-2 ms framing rate
 Example frames above: (a) SGI in NSTX vacuum vessel, (b) SGI injecting

gas into collapsing plasma with a wide Te = 3 eV, ne = (2-2.5) x 1018 m-3

scrape-off layer,  (c) 6 MW NBI-heated L-mode plasmas, (d) 4 MW NBI-
heated H-mode plasmas, (e) ohmic plasmas at 3 cm distance from LCFS

 Plasma filaments (“blobs”) are often observed to traverse through gas jet

 During supersonic gas injection
• SGI Langmuir probe does not typically show much Te reduction or Isat

increase
• Magnetic sensors do not show any EM perturbations
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 Hardware improvements under consideration:
• Independent gas handling system
• Increased plenum pressure limit (presently limited to 2500

Torr)
• New more efficient nozzles
• Density feedback with SGI using Plasma Control System

 Experiments under consideration
• Low density H-mode plasma development
• H-mode density control with SGI
• ELM regimes characterization - power and gas injection

scan

Future work

 

Visit NSTX SGI homepage at  nstx.pppl.gov/sgi
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NSTX fueling
• Gas injection: low field side (LFS, top + side), high field side (HFS, midplane +
shoulder), private flux region.  D2, He, injected at  S = 20 - 120 Torr l /s.
• Neutral beam injection system: three beams,  40 - 100 keV, 6 MW, fueling
rate: S < 6 Torr l / s
• Supersonic gas injection: S < 65 Torr l / s
NSTX wall conditioning
• Between shots He GDC
• He conditioning plasmas
• TMB and  Plasma TMB
NSTX pumping
• Turbomolecular pump (3400 l / s)
• NBI cryopump (50000 l / s)
• Conditioned walls
PFC
• ATJ graphite tiles on divertor and
   passive  plates
• ATJ and CFC tiles on center stack
• Tile thickness 1” and 2”

NSTX reference data

 


