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AbstractAbstract
••MotivationMotivation

i) Perform the first particle transport studies in high (Power & β) performance NSTX
H-modes, important for NSTX and the next-step ST.

••ExperimentExperiment
i) Neon injected in MHD quiescent high-β, high confinement H-modes.
ii) The main diagnostic used was the newly-developed “multi-color” optical SXR array.
iii) Atomic-based simulations constrained with the bolometer and poloidal USXR arrays. 

••ResultsResults
i) DNe≤1m2/s for (r/a ≤ 0.8) is in the neoclassical range.

ii) Low particle diffusivity that suggests anomalous transport driven by low-k
electrostatic turbulence is suppressed.

a) DZ (diffusion) & vZ (convective velocity)
b) Identify regimes with possible impurity “screening” (vZ>0).
c) ρ* scaling at fixed q-profile and independent scans of  Ip and/or Bφ.
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Previous experimental work done in Previous experimental work done in STsSTs

Neoclassical impurity transport in Neoclassical impurity transport in 
CDXCDX--U U ohmicohmic plasmasplasmas

[1] V. A. Soukhanovskii, et. al., 
Plasma Phy. Control. Fusion, 44, 2239, (2007).

[2] D. Stutman, et. al., 
Phys. Plasmas, 10, 4387, (2003).

Neoclassical impurity transport in Neoclassical impurity transport in 
NSTX LNSTX L--mode plasmasmode plasmas
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Main diagnostic used in impurity transport experimentsMain diagnostic used in impurity transport experiments
Tangential “multi-color” optical SXR array
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[3] L. F. Delgado-Aparicio, et. al., to appear, PPCF, 2007.
[4] L. F. Delgado-Aparicio, et. al., to appear, J. Appl. Phys., 2007
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Principle of the Principle of the ““opticaloptical”” soft xsoft x--ray (OSXR) arrayray (OSXR) array

Conversion of XUV emission to visible light

It’s a system that uses a fast (~1 μs) and efficient scintillator (CsI:Tl) in order to 
convert soft x-ray photons (0.1<Eph<10 keV) to visible green light (λ~550 nm).

To discrete channels and light 
detectors (PMT and/or APDs) + (RC/TIA) amplifiers

[5] L. F. Delgado-Aparicio, et. al., RSI, 2004
[6] L. F. Delgado-Aparicio, et. al., to appear, Appl. Opt., 2007
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Metallic foil Ec (eV) for 
Transm.=10%

Ec (eV) for 
Transm.=50%

Be 10 μm 780 1170

Be 100 μm 1690 2497

Be 300 μm 2416 3550

SXR metallic filters for the present tOSXR array

XUV energy discrimination & cutXUV energy discrimination & cut--off energies (off energies (EEcc))

Notes:
a) After Boronization (TMB) O/C ~ 1 %

b) Negligible concentration of High Z impurities
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“Ideal” contrast factor (300/10 vs 100/10) ~ 1.81

[3] L. F. Delgado-Aparicio, et. al., to appear, PPCF, 2007.
[4] L. F. Delgado-Aparicio, et. al., to appear, J. Appl. Phys., 2007
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HH--mode target (1MA, 4.5 mode target (1MA, 4.5 kGkG) ) –– background shotsbackground shots

4”8”

• Ip=1 MA, B0~4.5 kG, WT~230 kJ, τE~50 ms
(no large type I ELMs) 

• MHD-free during time of interest. 

• Constant boundary elongation (δ∼2.25) & 
triangularity (κ∼0.6) for ~ 500 ms

• NBI modulation: 5.4 MW and 4.2 MW

• Gas puff: 1.5 torr·l/s, Δt~50 ms, injection time: 
0.35

• Target  shots were reproducible; important for 
background subtraction (carbon accumulation)

NSTX #s 121154, 121162

MHD mode spectrum

~ 300 ms

NSTX #s 121154, 121162
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The background shots are reproducibleThe background shots are reproducible
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Small Neon perturbation of the background plasmaSmall Neon perturbation of the background plasma

1.5 Torr·l/s
Δt~50 ms

X-ray Extreme Ultraviolet Spectrometer (integrated signal)
(J. Lepson - UC – Berkeley,  P. Beiersdorfer, LLNL)
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Neon plasmas donNeon plasmas don’’t vary significantly from background shott vary significantly from background shot
Carbon Charge Exchange Recombination Spectroscopy (R. Bell, PPPL)
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OSXR show edge Neon builds up quickly, core builds up slowlyOSXR show edge Neon builds up quickly, core builds up slowly
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• Good SNR of OSXR signals when Neon was injected.
• Fast edge vs slow core Neon build up.
• Strong peaking of impurities (~0.7 s) and flattening of Te (consistent with MPTS)
• Late (1,1) MHD mode (~0.75 s). 
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No difference in flux surfaces or qNo difference in flux surfaces or q--profile in neon seeded plasmasprofile in neon seeded plasmas

An important requirement was to operate well 
below the ideal β limit and a q0>1, thus 
avoiding sawteeth, internal reconnection 

events and edge localized modes
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MatrixMatrix--based 1based 1--D Abel inversionD Abel inversion
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1D (radial) impurity transport simulation (MIST) code1D (radial) impurity transport simulation (MIST) code

The time evolution of the neon emissivity after the injectioninjection was modeled using 
the time-dependent MMultiple IIonization Stage TTransport code (MIST).

• Atomic processes included in the model:
i) Electron ionization        ii) excitation        iii)  recombination

• Computes the evolution of all charge states through the experimental MPTS time 
history of nnee(R,t(R,t)) & TTee ((R,tR,t)) profiles assuming external profiles of diffusivity (D) 
and convective velocity (V).

SXR filter contribution
1. He- & H- like ions emit resonances lines between 0.9-1.0 keV

⇒ detected through the Be 10 μm.

2. The fully stripped ions (Ne+10) emit strong recombination continuum 
radiation above the 1.4 keV ⇒ detected through the Be 100 μm.
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MIST simulation constraintsMIST simulation constraints

a) Tangential bolometer b) Poloidal USXR arrays

[7] D. Stutman, et. al., Phys. Plasmas, 3, 4387, (2003).
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Background subtracted OSXR and MIST simulationBackground subtracted OSXR and MIST simulation
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First estimates of First estimates of DDNeNe in the neoclassical rangein the neoclassical range

The impurity diffusivity estimated 
inside r/a≤0.7 is in good agreement 
with the NCLASS predicted [8] 
neoclassical transport coefficients.

[8] W. Houlberg, et. al., Phys. Plasmas, 4, 3320, (1997).

The existence of a small to moderate 
inward pinch velocity depend 
strongly on the plasma profiles.
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nZ(R,t) & Te(R,t) decoupling during late impurity accumulation

[5] L. F. Delgado-Aparicio, et. al., to appear, PPCF, 2007.



SummarySummary
• The neon penetrates the core on the tens to hundred ms, with a final peaking 

of the neon density indicating a diffusivity ≤ 1m2/s, and the existence of a 
small to moderate inward pinch velocity depending strongly on the plasma 
profiles.

• Preliminary NCLASS simulations indicate that the particle diffusivity is in 
the order of the values predicted by the neoclassical transport theory.

• Thermal ion transport from TRANSP is also in the neoclassical range.

• Particle transport around the ion neoclassical values would suggest a 
very low level of turbulent ion transport.

• Electron transport in this discharges is close to two orders of magnitude 
higher (b (mi/me)1/2 )
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