

Physics design of NHTX National High-power advanced Torus eXperiment

J.E. Menard, PPPL

With contributions from: G.-Y. Fu, R. Goldston, N. Gorelenkov, S. Kaye, G. Kramer, R. Maingi, C. Neumeyer, S. Sabbagh, V. Soukhanovskii, R. Woolley, and the NSTX Research Team

Columbia Univ., LLNL, ORNL, PPPL

34th EPS Conference on Plasma Physics Warsaw, Poland July 2-6, 2007 U.S. fusion program beginning an assessment of what concepts and initiatives are needed to extrapolate from ITER to Demo

Simpler Sustainment

ARIES-CS

Existing plasma-material interface concepts are marginal for ITER, and are unacceptable for CTF/FDF and Demo

- High-heat-flux challenge
 - ITER divertor and first-wall marginal even without off-normal events
 - No demonstrated heat flux solution (at high plasma performance) for CTF/FDF and Demo
 - ELMs & disruptions can ablate/melt divertor, threaten first-wall & blankets in ITER
 - Disruptions & ELMs unacceptable for CTF/FDF and Demo
- Tritium retention challenge
 - Carbon erosion and re-deposition \rightarrow up to 50:50 mix of C & DT in surface films
 - Erosion and neutron damage \rightarrow Carbon unacceptable for CTF/FDF or Demo
 - Safety concerns limit ITER in-vessel mobilizable T inventory to < 350g
 - < 1000mins of accumulated ITER ops before limit is reached with only 3% retention</p>
 - Potentially acceptable for ITER \rightarrow but need to develop new clean-up techniques
 - Few % retention rate unacceptable for week/month long CTF/FDF or Demo operation
 - Tungsten or flowing lithium might reduce T retention to acceptable levels, but...
 - W can melt during ELMs & disruptions, sputtered mid-Z impurities, dust formation
 - High liquid metal vapor pressure at high temperature could pollute plasma
- These challenges motivate new research device with following capabilities:

 Multiple divertor/PFC concepts, hot wall 1000°C, T operation, long pulse < 1000s
 High beta, high confinement, fully non-inductive operation

Measured power scrape-off width independent of machine size \rightarrow P/R is useful divertor heat-flux metric for comparing devices

Fig. 5. Measured power deposition width versus divertor power for H-mode discharges without gas puff in the ITER power deposition database. (Mapped from strike point to outer mid-plane.)

First wall heat-flux challenge \rightarrow P/S

NHTX can address integrated fusion science mission at heat-flux level of CTF/FDF, and extrapolates to Demo reactor heat-flux

Davias	D		D			Dulas		Creation	Commonto
Device	R	a	Pin	P _{in} /R	P _{in} /S	Pulse	Ι _ρ	Species	Comments
	(m)	(m)	(MW)	(MW/m)	(MW/m^2)	(sec)	(MA)		
Planned Long-Pulse Experiments									
EAST	1.70	0.40	24	14	0.55	1000	1.0	H (D)	Upgrade capability
JT-60SA	3.01	1.14	41	14	0.21	100	3.0	D	JA-EU Collaboration
KSTAR	1.80	0.50	29	16	0.52	300	2.0	H (D)	Upgrade Capability
LHD	3.90	0.60	10	3	0.11	10,000	_	Н	Upgrade capability
SST-1	1.10	0.20	3	3	0.23	1000	0.2	H (D)	Initial heating
W7-X	5.50	0.53	10	2	0.09	1800	_	Н	30MW for 10sec
NHTX	1.00	0.55	50	50*	1.13	200-1000	3.5	D (DT)	Initial heating
ITER	6.20	2.00	150	24	0.21	400-3000	15.0	DT	Not for divertor testing
Component Test Facility Designs									
CTF (A=1.5)	1.20	0.80	58	48	0.64	Weeks	12.3	DT	2 MW/m ² neutron flux
FDF (A=3.5)	2.49	0.71	108	43	0.87	Weeks	7.0	DT	2 MW/m ² neutron flux
Demonstration Power Plant Designs									
ARIES-RS	5.52	1.38	514	93	1.23	Months	11.3	DT	US Advanced Tokamak
ARIES-AT	5.20	1.30	387	74	0.85	Months	12.8	DT	US Advanced Technology
ARIES-ST	3.20	2.00	624	195	0.99	Months	29.0	DT	US Spherical Torus
ARIES-CS	7.75	1.70	471	61	0.91	Months	3.2	DT	US Compact Stellarator
ITER-like	6.20	2.00	600	97	0.84	Months	15.0	DT	ITER @ higher power, Q
EU A	9.55	3.18	1246	130	0.74	Months	30.0	DT	EU "modest extrapolation"
EU B	8.60	2.87	990	115	0.73	Months	28.0	DT	EU
EU C	7.50	2.50	794	106	0.71	Months	20.1	DT	EU
EU D	6.10	2.03	577	95	0.78	Months	14.1	DT	EU Advanced
SlimCS	5.50	2.12	650	118	0.90	Months	16.7	DT	AL

* Flux compression, low R_x/R , SND, additional $P_{AUX} \rightarrow$ can achieve Demo level heat-fluxes

The Integrated Fusion Science Mission of NHTX National High-power advanced Torus eXperiment

To integrate a fusion-relevant plasma-material interface with sustained high-performance plasma operation

NHTX will have the flexibility to study:

- Multiple divertor geometries
- Tritium retention and high-T PFCs
- Multiple advanced solid materials
- Liquid surfaces
- Stellarator-like edge magnetic field
- Magnetically expanded strike zone
- Radiative edge zone
- Multiple plasma heating technologies
- INTEGRATED WITH A HIGH-PERFORMANCE PLASMA

Such a device would:

Develop innovations needed for integrated core and boundary science for later phases of ITER, for CTF/FDF, and for a Demo power plant – whether Tokamak, ST or Compact Stellarator.

FTU Lithium Capillary Porous System (CPS)

Systems code identifies optimal aspect ratio A=1.8-2 based on NHTX mission and design

- A=1.8-2 maximizes P/R and I_P (or $I_P \times A$) at fixed magnet power
 - Fixed HH_{98v2}=1.3, use κ (A) and n=1 no-wall limit β_N (A) scalings
 - I_P from BS and NBI additional LHCD, ECCD/EBW to be assessed

NHTX has uniquely high $P_{in} / P_{L-H} > 10$ needed to test radiative solutions at $f_{rad} > 90\%$ for Demo

- P_{in} / P_{L-H} at $0.85 \times n_{Greenwald}$
 - ITER 3.6
 - JT-60SA 4.9
 - NHTX 12
 - ARIES-AT 11
- Is high radiated power fraction to reduce divertor heat flux compatible with high performance?
- Is thermal instability problematic in burning plasma at high radiation fraction?

NHTX Heating and Current Drive

- Total auxiliary heating and current drive power = 50MW
 - Neutral beams: 32 MW, 110 kV D_0 NBI, steerable off axis
 - 18 MW RF type to be determined
- Results from NSTX, C-MOD, DIII-D will be critical to selection of RF system(s)
 - EBWCD: High efficiency, remote coupling.
 - LHCD: High efficiency, intimate coupling.
 - ECCD: Inside-launch 120 GHz 2nd harmonic: lower efficiency, more complex access.
 - ICRF: Cost-effective electron or ion heating, intimate coupling
- 2MA bootstrap current at operating point
- For confidence in 3.5 MA steady-state operation, desirable to be able to drive ~ 1.5 MA with beams + RF ($R_0 = 1m$)

Overview of NHTX design progress

- Systems code has identified favorable design point:
 - A=1.8-2, R₀=1m, I_P=3-4MA, B_T=2T, κ =2.7-3, fully non-inductive
 - HH_{98Y} = 1.3, β_N =4.5, β_T =15%, f_{BS} = 65%, f_{GW} =0.4-0.5
 - Maximizes I_P , $I_P \times A$, and P/R for given magnet power
 - High β possible with Ω_{ϕ} & feedback stabilization of RWM
- Favorable PF coil configuration identified
 - Divertor flexibility without PF coil modification
 - Strong shaping flexibility (κ , δ , squareness, flux expansion)
 - Large midplane vertical gap for beam steering (ΔZ), diagnostics, access
- NBI current drive efficiency & profiles studied with TRANSP

 $- R_{TAN}$ and Z_{TAN} variations allow for J_{NBI} profile control

- NBICD scalings used in systems code are reasonable

Single coil set supports range of divertor configurations

Example configurations:

ITER-like LSN divertor

1

Coil set supports wide range of boundary shapes

Shaping plays important role in determining global and ELM stability

DND w/ negative squareness $\zeta \approx -0.15$

DND w/ near zero squareness

DND w/ positive squareness $\zeta \approx 0.25$

Example LSN shape

Divertor coil set supports wide range of flux expansion

Poloidal flux expansion factor $f_{exp} \equiv |\nabla \psi|_{mid-plane} / |\nabla \psi|_{strike-point}$ Poloidal B-field angle of incidence into target plate $\equiv \alpha_p$ Total B-field angle of incidence into target plate $\equiv \alpha_t$

NHTX Physics Design - J.E. Menard

NHTX can test wide range of divertor heat flux values

NBICD assessment w/ TRANSP uses thermal profile shapes based on high $f_{NI} = 60-70\%$ NSTX discharges

• Scale n_e, T_e profiles from 116313 - fixed T_i / T_e = 1.5, β_T =14%

TF coil layout (10 coils) and sizing allows for R_{TAN} variation of NBI for J-profile control

 R_{TAN} range = 1m ± 0.2m possible with cross-over point at vessel entrance Driven current increases \times 3 for R_{TAN}=0.7 \rightarrow 1.3m and increases more quickly w/ radius for R_{TAN} > R₀

At design point, tangency radius of injection controls degree of shear reversal and radius of q_{MIN}

$$\overline{n}_{e} = 1.4 \times 10^{20} \text{m}^{-3}, \ \overline{T}_{e} = 4.2 \text{keV}, \ f_{GW} = 0.43, \ \beta_{t} = 14\%$$

With sufficient confinement and/or P_{AUX} , NHTX can investigate high f_{BS} AT physics relevant to Demo

If β_t is doubled, bootstrap current dominates NBI-driven current, and R_{TAN} controls only q(0)

Ability to control density and operate at $f_{GW} < 0.5$ crucial for high NBICD efficiency

LHCD for lower-density operating points and current ramp-up appears promising

Summary

- Systems code has identified favorable design point:
 - A=1.8-2, R_0 =1m, I_P =3-4MA, B_T =2T, κ =2.7-3, full NICD
 - HH_{98Y} = 1.3, β_N =4.5, β_T =15%, $f_{BS} \ge 65\%$, f_{GW} =0.4-0.5
- Favorable coil geometry found for maximum flexibility

 Divertor flexibility critical element of NHTX mission
- NBI Z_{TAN} and R_{TAN} variations allow control of J_{NBICD} – Analyzing engineering tradeoffs of ΔR vs. ΔZ beam shift
- Beginning studies of additional heating & CD sources
 Up to 18MW of additional RF power

Sign-up