

Physics design of NHTX National High-power advanced Torus eXperiment

J.E. Menard, PPPL

With contributions from: G.-Y. Fu, R. Goldston, N. Gorelenkov, S. Kaye, G. Kramer, R. Maingi, C. Neumeyer, S. Sabbagh, V. Soukhanovskii, R. Woolley, and the NSTX Research Team

Columbia Univ., LLNL, ORNL, PPPL

34th EPS Conference on Plasma Physics Warsaw, Poland July 2-6, 2007

U.S. fusion program beginning an assessment of what concepts and initiatives are needed to extrapolate from ITER to Demo

ARIES-CS

Existing plasma-material interface concepts are marginal for ITER, and are unacceptable for CTF/FDF and Demo

- High-heat-flux challenge
	- ITER divertor and first-wall marginal even without off-normal events
		- No demonstrated heat flux solution (at high plasma performance) for CTF/FDF and Demo
	- ELMs & disruptions can ablate/melt divertor, threaten first-wall & blankets in ITER
		- Disruptions & ELMs unacceptable for CTF/FDF and Demo
- Tritium retention challenge
	- Carbon erosion and re-deposition \rightarrow up to 50:50 mix of C & DT in surface films
		- Erosion and neutron damage \Rightarrow Carbon unacceptable for CTF/FDF or Demo
	- Safety concerns limit ITER in-vessel mobilizable T inventory to < 350g
		- < 1000mins of accumulated ITER ops before limit is reached with only 3% retention
		- Potentially acceptable for ITER \rightarrow but need to develop new clean-up techniques
		- Few % retention rate unacceptable for week/month long CTF/FDF or Demo operation
	- Tungsten or flowing lithium might reduce T retention to acceptable levels, but…
		- W can melt during ELMs & disruptions, sputtered mid-Z impurities, dust formation
		- High liquid metal vapor pressure at high temperature could pollute plasma
- These challenges motivate new research device with following capabilities: – Multiple divertor/PFC concepts, hot wall 1000°C, T operation, long pulse < 1000s – High beta, high confinement, fully non-inductive operation

Measured power scrape-off width independent of machine size \rightarrow P/R is useful divertor heat-flux metric for comparing devices

Fig. 5. Measured power deposition width versus divertor power for H-mode discharges without gas puff in the ITER power deposition database. (Mapped from strike point to outer mid-plane.)

First wall heat-flux challenge \rightarrow P/S

NHTX can address integrated fusion science mission at heat-flux level of CTF/FDF, and extrapolates to Demo reactor heat-flux

* Flux compression, low R_x/R, SND, additional P_{AUX} \rightarrow can achieve Demo level heat-fluxes

The Integrated Fusion Science Mission of **NHTX N**ational **H**igh-power advanced **T**orus e **X**periment

To integrate a fusion-relevant plasma-material interface with sustained high-performance plasma operation

NHTX will have the flexibility to study:

- •**Multiple divertor geometries**
- •**Tritium retention and high-T PFCs**
- •**Multiple advanced solid materials**
- •**Liquid surfaces**
- •**Stellarator-like edge magnetic field**
- •**Magnetically expanded strike zone**
- •**Radiative edge zone**
- •**Multiple plasma heating technologies**
- •**INTEGRATED WITH A HIGH-PERFORMANCE PLASMA**

Such a device would:

Develop innovations **needed for integrated core and boundary science for later phases of ITER, for CTF/FDF, and for a Demo power plant – whether Tokamak, ST or Compact Stellarator.**

FTU Lithium Capillary Porous System (CPS)

Systems code identifies optimal aspect ratio A=1.8-2 based on NHTX mission and design

- •A=1.8-2 maximizes P/R and I_P (or I_P×A) at fixed magnet power
	- Fixed HH_{98y2}=1.3, use κ(A) and **n=1 no-wall limit** β_N(A) scalings
	- $-$ I_P from BS and NBI additional LHCD, ECCD/EBW to be assessed

Aspect Ratio

NHTX has uniquely high P $_{\sf in}$ / P $_{\sf L-H}$ > 10 needed to test radiative solutions at f_{rad} > 90% for Demo

- $\,$ P $_{\rm in}$ / P $_{\rm L-H}$ at 0.85 \times n $_{\rm Greenwald}$
	- **ITER3.6**
	- **JT-60SA4.9**
	- **NHTX12**
	- **ARIES-AT 11**
- Is high radiated power fraction to reduce divertor heat flux compatible with high performance?
- Is thermal instability problematic in burning plasma at high radiation fraction?

NHTX Heating and Current Drive

- Total auxiliary heating and current drive power = 50MW
	- Neutral beams: $~32$ MW, 110 kV D $_{\rm 0}$ NBI, steerable off axis
	- 18 MW RF type to be determined
- Results from NSTX, C-MOD, DIII-D will be critical to selection of RF system(s)
	- EBWCD: High efficiency, remote coupling.
	- LHCD: High efficiency, intimate coupling.
	- ECCD: Inside-launch 120 GHz 2nd harmonic: lower efficiency, more complex access.
	- ICRF: Cost-effective electron or ion heating, intimate coupling
- 2MA bootstrap current at operating point
- For confidence in 3.5 MA steady-state operation, desirable For confidence in 3.5 MA steady-state operation, desirable
to be able to drive ~ 1.5 MA with beams + RF $\,(R_{0} = 1m)$

Overview of NHTX design progress

- Systems code has identified favorable design point:
	- A=1.8-2, R₀=1m, I_P=3-4MA, B_T=2T, κ=2.7-3, fully non-inductive
	- HH_{98Y} = 1.3, β_N=4.5, β_T=15%, f_{BS}= 65%, f_{GW}=0.4-0.5
	- Maximizes I_P , $I_P\times A$, and P/R for given magnet power
	- High β possible with Ω_ϕ & feedback stabilization of RWM
- Favorable PF coil configuration identified
	- Divertor flexibility without PF coil modification
	- Strong shaping flexibility (^κ, δ, squareness, flux expansion)
	- Large midplane vertical gap for beam steering (ΔZ), diagnostics, access
- NBI current drive efficiency & profiles studied with TRANSP
	- R_{TAN} and Z_{TAN} variations allow for J_{NBI} profile control
	- NBICD scalings used in systems code are reasonable

Single coil set supports range of divertor configurations

Example configurations:

ITER-like LSN divertor

Coil set supports wide range of boundary shapes

• Shaping plays important role in determining global and ELM stability

DND w/ negative squareness $\zeta \approx -0.15$

DND w/ near zerosquareness

DND w/ positive squareness $\zeta \approx 0.25$

Example LSN shape

Divertor coil set supports wide range of flux expansion

Poloidal flux expansion factor $f_{exp} = |\nabla \psi|_{mid-plane} / |\nabla \psi|_{strike-point}$
Poloidal B-field angle of incidence into target plate ≡ α_p
Total B-field angle of incidence into target plate ≡ α_t

NHTX can test wide range of divertor heat flux values

NBICD assessment w/ TRANSP uses thermal profile shapes based on high f $_{\sf{NI}}$ = 60-70% NSTX discharges

• Scale n_e, T_e profiles from 116313 - fixed T_i / T_e = 1.5, $\beta_{\textsf{T}}$ =14%

TF coil layout (10 coils) and sizing allows for $\mathsf{R}_{\mathsf{TAN}}$ variation of NBI for J-profile control

• $\mathsf{R}_{\mathsf{TAN}}$ range = 1m \pm 0.2m possible with cross-over point at vessel entrance

Driven current increases \times 3 for R_{TAN}=0.7 \rightarrow 1.3m and increases more quickly w/ radius for $\mathsf{R}_{\mathsf{TAN}}$ > R_{0}

$$
\mathbf{NBICD} \text{ for } \overline{\mathbf{n}}_{\mathbf{e}} = 1.4 \times 10^{20} \mathbf{m}^{-3}, \overline{\mathbf{T}}_{\mathbf{e}} = 4.2 \mathbf{keV}, \mathbf{f}_{\mathbf{GW}} = 0.43
$$

At design point, tangency radius of injection controls degree of shear reversal and radius of q_{MIN}

$$
\overline{n}_{e} = 1.4 \times 10^{20} \text{m}^{-3}, \overline{T}_{e} = 4.2 \text{keV}, f_{GW} = 0.43, \beta_{t} = 14\%
$$

With sufficient confinement and/or P_{AUX} , NHTX can investigate high f $_{\sf BS}$ AT physics relevant to Demo

If $\beta_{\rm t}$ is doubled, bootstrap current dominates NBI-driven current, and $\mathsf{R}_{\text{\sf TAN}}$ controls only $\mathsf{q}(\mathsf{0})$

Ability to control density and operate at $\rm{f_{GW}}$ < 0.5 crucial for high NBICD efficiency

LHCD for lower-density operating points and current ramp-up appears promising

Summary

• Systems code has identified favorable design point:

A=1.8-2, R₀=1m, I_P=3-4MA, B_T=2T, κ=2.7-3, full NICD

- $\mathsf{HH}_{98\mathsf{Y}}$ = 1.3, β_N=4.5, β_T=15%, f_{BS} \geq 65%, f_{GW}=0.4-0.5
- High β possible with Ω_ϕ & feedback stabilization of RWM
- Favorable coil geometry found for maximum flexibility $\mathcal{L}_{\mathcal{A}}$ Divertor flexibility critical element of NHTX mission
- $\bullet\,$ NBI Z $_{\sf TAN}$ and ${\sf R}_{\sf TAN}$ variations allow control of $\sf J_{\sf NBICD}$ Analyzing engineering tradeoffs of $\Delta {\sf R}$ vs. $\Delta {\sf Z}$ beam shift
- Beginning studies of additional heating & CD sources Up to 18MW of additional RF power

Sign-up